Updates from Ciena

Can utilities have their multi-layered cake and eat it too?
Utilities are facing increasing bandwidth demands on their communications networks. Ciena’s Mitch Simcoe explains how modernizing networks to a private packet-optical fiber architecture can help utilities scale to support new smart grid applications.
By Mitch Simcoe – Utilities are increasingly in the eye of the storm these days. Whether it’s having to deal with hurricanes in the Gulf Coast over the last few months or wildfires on the West Coast, utilities have had to put more sensors out in the field to keep abreast of changing weather conditions and potential risks to their power grids. The increasing demands for utilities to show that they are carbon-free is also changing the way they generate and distribute energy. The one common denominator that utilities have is more data to collect and backhaul from their power grids, which is driving increasing demand on their communications networks.

Many utilities may not realize it, but recent advancements have resulted in several bandwidth-intensive applications and processes driving up demand on their networks:

  1. Video Surveillance
    Security continues to be top of mind for utilities and security surveillance in the past has been more “after the fact”; where video surveillance is stored locally at the substation and only accessed after a security breach. Today’s approach is to backhaul all security video footage to a centralized data center and apply artificial intelligence (AI) techniques to proactively determine if a security breach is in the process of occurring. In those cases, security personnel can be dispatched on site in near-real time. Each video camera at a substation can generate 9 Gigabytes of data per day and a typical substation could have a dozen video cameras to surveil.
  2. Synchrophasors
    Prior to the big power outage of 2003 in the Northeast United States (where 50 million households lost power for two days), sensors on the power grid using SCADA (Supervisory Control and Data Acquisition) would sample the state of the grid about once every four seconds. This significant outage could have been avoided had the grid been sampling data more frequently. To address this, a device called a synchrophasor (not the Star Trek type!) was introduced, which would sample the state of the grid 30 to 60 times per second. This has allowed the grid to be more reliable but produces significantly more data to backhaul and process. Each synchrophasor PMU (Performance Measurement Unit) can generate 15 Gigabytes of data per day and all of that must be backhauled to a central data center for analysis.
  3. Smart Meters
    In the US, over 50% of households are now serviced by a smart meter that measures your household’s power consumption every 15 minutes. Beyond their billing function, they help utilities track power consumption hotspots during peak usage. For a utility of 1 million households, which would be the middle range for most US Investor-owned Utilities (IOUs), this can generate 1 terabyte of data per day that needs to be backhauled to a central data center for processing.
  4. Internet of Things (IoT) devices
    These include what we mentioned earlier: weather sensors and sensors on power equipment to proactively identify issues. Smart thermostats in homes is another growing trend which utilities are using to offer smart “on-demand” billing plans where you allow the utility to raise your thermostat during periods of peak usage during the hot summer months in exchange for a lower cents per kWh price.
READ  Business Groups Question Net Neutrality Rules

For the first three categories we mentioned above, a utility of 1 million households would result in a daily requirement for data backhaul of 6 to 8 terabytes. With this amount of data to backhaul and process, it is no wonder utilities are exhausting the available capacity of their legacy communications networks.

The Information Technology (IT) group in a utility is tasked with managing many of these new applications associated with a smarter grid. Some utilities have been leasing copper-based TDM services for many years from service providers for smart grid, IT and substation traffic. The cost of this approach has been onerous and only gets more expensive as service providers are migrating their networks away from copper to fiber and wireless options. more>

Leave a Reply

Your email address will not be published. Required fields are marked *