Category Archives: Energy

Universe in a bubble

Maybe we don’t have to speculate about what life is like inside a bubble. It might be the only cosmic reality we know.
By J Richard Gott – The explanation for the accelerating cosmic expansion, surprising as it was at first, was readily available from the theoretical toolbox of physicists. It traced back to an idea from Albert Einstein, called the cosmological constant. Einstein invented it in 1917, as part of a failed attempt to produce a static Universe based on his general theory of relativity. At that time, the data seemed to support such a model.

In 1922, the Russian mathematician Alexander Friedmann showed that relativity in its simplest form, without the cosmological constant, seemed to imply an expanding or contracting Universe. When Hubble’s observations showed conclusively that the Universe was expanding, Einstein abandoned the cosmological constant, but the possibility that it existed never went away.

Then the Belgian physicist Georges Lemaître showed that the cosmological constant could be interpreted in a physical way as the vacuum of empty space possessing a finite energy density accompanied by a negative pressure. That idea might sound rather bizarre at first. We are accustomed, after all, to thinking that the vacuum of empty space should have a zero energy density, since it has no matter in it. But suppose empty space had a finite but small energy density – there’s no inherent reason why such a thing could not be possible.

Negative pressure has a repulsive gravitational effect, but at the same time the energy itself has an attractive gravitational effect, since energy is equivalent to mass. (This is the relationship described by E=mc2, another implication of special relativity.) Operating in three directions – left-right, front-back, and up-down – the negative pressure creates repulsive effects three times as potent as the attractive effects of the vacuum energy, making the overall effect repulsive. We call this vacuum energy dark energy, because it produces no light. Dark energy is the widely accepted explanation for why the expansion rate of the Universe is speeding up.

Distant galaxies will flee from us because of the stretching of space between us and them. After a sufficient number of doublings, the space between them and us will be stretching so fast that their light will no longer be able to cross this ever-widening gap to reach us. Distant galaxies will fade from view and we will find ourselves seemingly alone in the visible Universe. more>

Updates from ITU

If we want to solve climate change, water governance is our blueprint
By Elizabeth Taylor – The phrase “fail to prepare or prepare to fail” comes to mind as we enter an era in which governments and communities must band together to mitigate climate change. Part of what makes our next steps so uncertain is knowing we must work together in ways that we have – so far – failed to do. We either stall, or offer up “too little, too late” strategies.

These strategies include cap-and-trade economic incentive programs, like the Kyoto Protocol and other international treaties. Insightful leaders have drawn attention to the issue, but lukewarm political will means that they are only able to defer greenhouse gas emissions-reduction targets in the future. A global crisis demands global commitment. How can we work together to face a universal threat? What of the complex challenges that demand unified monitoring and responses?

One principal impediment is the lack of coherent technical infrastructure.

Currently, our arsenal for facilitating collective action is understocked. Our policies are unable to invoke tide-turning change because they lack a cohesive infrastructure. In the absence of satisfactory tools to make them happen, our policies and pledges become feelgood initiatives rather than reaching full effectiveness.

What tools might lead us to act collectively against climate change? It’s easy to focus on the enormous scale of global cooperation needed, or the up-front investments it will take to mitigate the crisis. But as the writer E.L. Doctorow reminded us, we can’t be intimidated by the process: “Writing a novel is like driving a car at night,” he said. “You can see only as far as your headlights, but you can make the whole trip that way.”

We don’t have to possess all the answers as we set out to save our communities. We don’t have to know exactly what we will meet along the way. At a minimum, we must only understand how to use our headlights to see the first few feet ahead of us.

So what is the first step on our path?

It is the substance that underpins our industry, health and survival. It remains a central source of conflict around the world, yet it also creates partnerships. Our first step is water.

Water challenges us with issues of scarcity, quality and distribution. It may seem to be a local issue, but combined with local tensions and a globalized economy, water governance is set to become one of our greatest tests of diplomatic finesse and technological synergy.

If we can properly align local and global water governance and management, we can prepare the tools, the organizational blueprint and the political momentum needed to solve climate change. more>

Related>

Why the US bears the most responsibility for climate change, in one chart

By Umair Irfan – Humans are pumping more carbon dioxide into the atmosphere at an accelerating rate. But climate change is a cumulative problem, a function of the total amount of greenhouse gases that have accumulated in the sky. Some of the heat-trapping gases in the air right now date back to the Industrial Revolution. And since that time, some countries have pumped out vastly more carbon dioxide than others.

The wonderful folks at Carbon Brief have put together a great visual of how different countries have contributed to climate change since 1750. The animation shows the cumulative carbon dioxide emissions of the top emitters and how they’ve changed over time.

What’s abundantly clear is that the United States of America is the all-time biggest, baddest greenhouse gas emitter on the planet.

That’s true, despite recent gains in energy efficiency and cuts in emissions. These relatively small steps now cannot offset more than a century of reckless emissions that have built up in the atmosphere. Much more drastic steps are now needed to slow climate change. And as the top cumulative emitter, the US bears a greater imperative for curbing its carbon dioxide output and a greater moral responsibility for the impacts of global warming.

Yet the United States is now the only country aiming to withdraw from the Paris climate agreement. more>

Updates from Georgia Tech

Neuroscientists Team with Engineers to Explore how the Brain Controls Movement
By Carol Clark – Scientists have made remarkable advances into recording the electrical activity that the nervous system uses to control complex skills, leading to insights into how the nervous system directs an animal’s behavior.

“We can record the electrical activity of a single neuron, and large groups of neurons, as animals learn and perform skilled behaviors,” says Samuel Sober, an associate professor of biology at Emory University who studies the brain and nervous system. “What’s missing,” he adds, “is the technology to precisely record the electrical signals of the muscles that ultimately control that movement.”

The Sober lab is now developing that technology through a collaboration with the lab of Muhannad Bakir, a professor in Georgia Tech’s School of Electrical and Computer Engineering.

The technology will be used to help understand the neural control of many different skilled behaviors to potentially gain insights into neurological disorders that affect motor control.

“By combining expertise in the life sciences at Emory with the engineering expertise of Georgia Tech, we are able to enter new scientific territory,” Bakir says. “The ultimate goal is to make discoveries that improve the quality of life of people.” more>

Related>

Guidelines to Achieve Digital Transformation

GSR-18 BEST PRACTICE GUIDELINES ON NEW REGULATORY FRONTIERS TO ACHIEVE DIGITAL TRANSFORMATION
itu.int – Digitization is increasingly and fundamentally changing societies and economies and disrupting many sectors in what has been termed the 4th Industrial Revolution. Meanwhile, ICT regulation has evolved globally over the past ten years and has experienced steady transformation.

As regulators, we need to keep pace with advances in technology, address the new regulatory frontiers and create the foundation upon which digital transformation can achieve its full potential. Being prepared for digital transformation and emerging technologies such as Artificial Intelligence (AI), the Internet of Things (IoT), Machine to Machine communications (M2M) and 5G is fundamental.

Advances in technology are creating new social phenomena and business models that impact every aspect of our personal and professional lives – and which challenge regulatory paradigms. M2M, cloud computing, 5G, AI and IoT are all bringing further profound change. Recognizing the potential of emerging technologies and the impact that policy and regulatory frameworks can have on their success, regulators should encourage a regulatory paradigm pushing frontiers and enabling the digital transformation. more> draft doc (pdf)

Updates from Siemens

Closed Loop Quality Management for Electronics
Siemens – Optimize and simplify business processes by standardizing and unifying quality related processes and workflows throughout your entire organization.

Quality planning begins during the engineering and design process of your product, and continuous with quality control during the manufacturing of the product.

With the collection of quality data from design and production you are able to initiate the problem solving process and improve your product and your manufacturing processes continuously and sustainably.

The Plan-Do-Check-Act (PDCA) cycle describes the four phases of the continuous improvement process (CIP) and is the basis for the Siemens PLM quality philosophy. more>

Related>

It Takes a Village to Create Solid Electrolytes

By Kevin Clemens – Presently, commercial lithium ion batteries use a carbon graphite anode electrode and a metal oxide cathode electrode. They are separated by a liquid organic solvent that can pass lithium ions between the electrodes while preventing electrons from making the journey. The organic solvent of the electrolyte is flammable—resulting in a potential for a fire in the event that a lithium ion battery is punctured.

The anode side of a lithium ion battery is made from layers of graphite. Lithium ions are inserted between the material’s layers during charging and are released during discharge. Battery researchers realize that replacing the graphite anode with metallic lithium would allow many more lithium ions to flow during discharge, producing a battery with at least twice the capacity. But during the charging stage of a lithium metal battery, spiky crystalline structures, called dendrites, form on the metal surface. These dendrites can grow through the liquid electrolyte, reaching the cathode and shorting out the battery.

A worldwide search is on for a solid or semi-solid electrolyte that can prevent dendrite growth while allowing the easy passage of lithium ions without conducting electrons. more>

Updates from Siemens

Case Study
PlySim meets composite structural engineering challenges; results include a 500+ percent improvement in modeling productivity, plus a better blade and a growing business

Siemens – According to RenewableUK, the trade and professional body for the United Kingdom (U.K.) wind and marine renewables industries, the U.K. is the windiest country in Europe – so much so that this free fuel could meet the power needs of the country several times over. RenewableUK notes that there are over 4,000 wind turbines currently operational in the U.K., with a total capacity of 7.391 gigawatts (gw), enough to power over 7 million homes. It is estimated that by 2016, there will be 8 gw of offshore capacity installed, with a total of 18 gw by 2020. However, there are significant engineering challenges associated with such substantial growth that companies such as PlySim, based in Edinburgh, U.K., are already successfully addressing.

PlySim Ltd. (Plysim) is a composite structural engineering consultancy, with heavy focus on finite element analysis (FEA). Its main markets are in the renewables sectors (wind, wave and tidal) as well as marine and civil engineering. Malcolm Wadia, director of PlySim, says, “We work with clients worldwide on the analysis of large complex structures in composite materials, having materials tested if necessary, developing the whole structural design prior to analysis, and providing certification reports and full-scale test specifications for each design, if required. Ultimately, we provide the 2D ply layup and production drawings.” more>

Huge power outage in Amsterdam – We are prepared!


datacenter.com – Sunday, April 29th, Dutch electricity network administrator Tennet reported Amsterdam South East was hit by a power outage, with the effect that 18,000 connections no longer had power.

The outage occurred 00:42 at a Tennet substation when a high-voltage connection in Amsterdam Bijmer-South failed. Trains, trams, and planes ground to a temporary halt in and around Amsterdam. Amsterdam Schiphol Airport was closed due to the power outage.

Our main task as Datacenter.com is to keep our data centers and your critical IT infrastructure on-line at all times.. Huge power outages like these confirms that we are able to keep that promise. more>

Updates from GE

Leading The Charge: As Battery Storage Sweeps The World, GE Finds Its Place In The Sun
By Tomas Kellner – The “duck curve” has two distinct peaks — one in the morning and the other after sunset — connected by a sagging belly pulled down by the deluge of renewable energy generated by the millions of solar panels sprinkled across California’s roofs and fields.

On a sunny Sunday, this glut of input could even lead to oversupply, a situation where wholesale energy prices drop so much that producers pay utilities to take their energy.

The problem reverses when the sun sinks into the Pacific. Power producers must quickly crank up their plants – many of them burning gas or coal – to replace those missing solar electrons with 11,000 megawatts to keep the state’s homes and businesses humming.

“The peak for solar power generation is at noon,” says Eric Gebhardt, vice president of strategic technology for GE Power. “What if you could store this energy and release it six hours later when the sun goes down and people come home, start cooking dinner and watch TV?” Gebhardt asks.

That’s precisely the point of GE’s Reservoir, a new grid-scale energy storage system the company unveiled today. The grid has to be perfectly balanced, meaning that power supply and demand match, to prevent it from crashing.

The Reservoir will allow producers to “decouple when energy is produced and when it is consumed,” Gebhardt says. “Without it, if you have too much solar during the day, the only option you have is to curtail production.”

The rise of the electric car unleashed innovation in the battery space, and the spread of solar power has brought costs down 50 percent over the last four years, says Keith Longtin, product breakout leader at GE Global Research in Niskayuna, New York. “You are now getting to a point where energy storage starts to make sense,” he says. more>