Category Archives: Nature

Updates from Georgia Tech

New Projects Create a Foundation for Next-Gen Flexible Electronics
By Josh Brown – Four projects set to move forward at the Georgia Institute of Technology aim to lay the groundwork for manufacturing next-generation flexible electronics, which have the potential to make an impact on industries ranging from health care to defense.

Researchers at Georgia Tech are partnering with Boeing, Hewlett Packard Enterprises, General Electric, and DuPont as well other research institutions such as Binghamton University and Stanford University on the projects.

Flexible electronics are circuits and systems that can be bent, folded, stretched or conformed without losing their functionality. The systems are often created using machines that can print components such as logic, memory, sensors, batteries, antennas, and various passives using conductive ink on flexible surfaces. Combined with low-cost manufacturing processes, flexible hybrid electronics unlock new product possibilities for a wide range of electronics used in the health care, consumer products, automotive, aerospace, energy and defense sectors.

“Flexible electronics will make possible new products that will help us address problems associated with food supply, clean water, clean energy, health, infrastructure, and safety and security,” said Suresh Sitaraman, a professor in the George W. Woodruff School of Mechanical Engineering, who is leading Georgia Tech’s flexible electronics activities. more>


The body is the missing link for truly intelligent machines


Basin and Range, Author: John McPhee.
Descartes’ Error, Author: Antonio Damasio.

By Ben Medlock – Things took a wrong turn at the beginning of modern AI, back in the 1950s. Computer scientists decided to try to imitate conscious reasoning by building logical systems based on symbols. The method involves associating real-world entities with digital codes to create virtual models of the environment, which could then be projected back onto the world itself.

In later decades, as computing power grew, researchers switched to using statistics to extract patterns from massive quantities of data. These methods are often referred to as ‘machine learning’. Rather than trying to encode high-level knowledge and logical reasoning, machine learning employs a bottom-up approach in which algorithms discern relationships by repeating tasks, such as classifying the visual objects in images or transcribing recorded speech into text.

But algorithms are a long way from being able to think like us. The biggest distinction lies in our evolved biology, and how that biology processes information. Humans are made up of trillions of eukaryotic cells, which first appeared in the fossil record around 2.5 billion years ago. A human cell is a remarkable piece of networked machinery that has about the same number of components as a modern jumbo jet – all of which arose out of a longstanding, embedded encounter with the natural world.

We only have the world as it is revealed to us, which is rooted in our evolved, embodied needs as an organism. Nature ‘has built the apparatus of rationality not just on top of the apparatus of biological regulation, but also from it and with it’,

In other words, we think with our whole body, not just with the brain. more>

A Brief History of the Grand Unified Theory of Physics

By Lawrence M. Krauss – Each time we peel back one layer of reality, other layers beckon. So each important new development in science generally leaves us with more questions than answers. But it also usually leaves us with at least the outline of a road map to help us begin to seek answers to those questions.

The successful discovery of the Higgs particle, and with it the validation of the existence of an invisible background Higgs field throughout space (in the quantum world, every particle like the Higgs is associated with a field), was a profound validation of the bold scientific developments of the 20th century.

As elegant as this idea might be, it is essentially an ad hoc addition to the Standard Model of physics—which explains three of the four known forces of nature, and how these forces interact with matter. It is added to the theory to do what is required to accurately model the world of our experience. But it is not required by the theory. The universe could have happily existed with massless particles and a long-range weak force (which, along with the strong force, gravity, and electromagnetism, make up the four known forces). We would just not be here to ask about them. Moreover, the detailed physics of the Higgs is undetermined within the Standard Model alone. The Higgs could have been 20 times heavier, or 100 times lighter.

Why, then, does the Higgs exist at all? And why does it have the mass it does? (Recognizing that whenever scientists ask “Why?” we really mean “How?”) If the Higgs did not exist, the world we see would not exist, but surely that is not an explanation. Or is it? Ultimately to understand the underlying physics behind the Higgs is to understand how we came to exist. When we ask, “Why are we here?,” at a fundamental level we may as well be asking, “Why is the Higgs here?” more>


Updates from Aalto University

Launch times draw near for Aalto satellites
By Jaan Praks – The Aalto-2 satellite, designed and built by students, is ready and waiting to be launched inside the Cygnus space shuttle at the Cape Canaveral Space Launch Complex in the US.

On 22 March, the shuttle will be launched with an Atlas V booster rocket up to the orbiting international space station, where the astronauts will release it later to orbit independently.

Aalto-2 will take part in the international QB50 Mission, the aim of which is to produce the first ever comprehensive model of the features of the thermosphere, the layer between the Earth’s atmosphere and space. Dozens of satellites constructed in different countries will also be part of the mission.

Construction of the Aalto-2 satellite began in 2012 as a doctoral project when the first students graduated as Masters of Science in Technology after working on the Aalto-1 project.

Since the start of the Aalto-1 project in 2010 and the Aalto-2 project two years later, around a hundred new professionals have been trained in the space sector. The impact is already visible in the growth of space sector start-up companies. more>


How Does Solar Photovoltaic Energy Work?

Evergreen Solar – The solar photovoltaic cells in your solar panels are the mechanisms which convert sunlight into energy. When you install solar panels on your house, the PV cells convert sunlight into direct current (DC) and an inverter connected to the system is what converts direct current into alternating current (AC) – which is the type of current needed to power your household appliances. This power runs through your electrical panel box, just like electricity you get from the grid, and you can potentially run your entire house on solar power than power taken from the grid.

Most residential solar energy systems are still connected to the grid. This is to allow for uninterrupted electricity in occasions when you don’t have enough solar energy to continue to power your house (e.g., on cloudy days or during the night).

If you generate enough energy from your solar panels such that you have “extra” energy left over, it will get fed back to the grid and you will get credit for this contribution of energy. Termed “net metering,” this transfer of electricity allows some customers to still maintain a $0 electric bill even when using the utility company’s energy from the grid. more>

The Future of Growing Cities Rests in Smart Transit

By Robert Garcia – Transportation isn’t just about moving people around; it’s also about moving goods. As home of the nation’s largest port complex, Long Beach has made significant strides to transport goods in more efficient and environmentally sustainable ways, and we are quickly becoming a model for ports across the globe.

Long Beach is now ranked in the top 10 cities nationally for walkability and bike-ability. And we have even used technology to make it easier for those who elect to drive, with apps like EZParkLB, which shows parking availability and pricing in real time. In addition, we have partnered with Mercedes Benz to launch an electric vehicle charger giveaway program to encourage more people to adopt sustainable technology.

Through the Green Port Policy, the Port of Long Beach has successfully introduced smart technologies over the past twenty years, bringing us closer to our goal of becoming a zero-emissions facility. We have reduced greenhouse gases significantly by using electric equipment on the docks and are currently in the process of converting existing vehicles to clean cargo-handling technologies. Other advances include providing shore power for ships, allowing engines to be shut down, and on-dock rail that shifts more than 30 percent of the cargo shipments from trucks to trains. And our newest terminal, Middle Harbor, uses the most advanced automated technology available to move containers from ships and into economic markets throughout the country. more>


The Global War on Tourism

By Daniel Benaim – Initial data suggests that a “Trump slump” in tourism may well be materializing: Oxford Economics predicts that foreign travel to the U.S. could drop by 8 percent, or 6.3 million visitors, this coming year. Travel sites have reported massive declines in searches from the UK for travel to Tampa, Orlando, Miami, San Diego, Las Vegas and Los Angeles.

The Global Business Travel Association estimates that Trump’s policies have already cost the U.S. travel industry nearly $200 million. Meanwhile, New York City is predicting 300,000 fewer foreign tourists than last year at a cost of $600 million – a figure revised sharply down after Trump won.

The irony in all of this is that America’s marketer-in-chief is damaging America’s brand – and the self-declared “America-first” president is keeping foreigners’ money out of Americans’ hands. Foreign tourists do not get to vote in American elections, but they will vote with their feet. Let’s hope that President Obama’s record tourism numbers do not give way to a “Trump slump.” more>

Your Brain as Laboratory: The Science of Meditation

By John Yates +- an define science as the systematic study of the natural world through observation and experiment, yielding an organized body of knowledge on a particular subject. The human mind is undeniably a suitable subject for scientific study, and one purpose of meditation is careful observation of one’s own mind.

This observation reveals consistent patterns that meditators share with one another and with teachers who direct their practice.

However, meditation is not simply passive observation, nor could it be, since the very act of observation is itself an activity of mind. Rather the meditator intentionally employs attention, awareness, and other mental faculties in a variety of ways to better understand the functional behavior of the mind. more>

Updates from Georgia Tech

Four-Stroke Engine Cycle Produces Hydrogen from Methane and Captures CO<sub2
By John Toon – When is an internal combustion engine not an internal combustion engine? When it’s been transformed into a modular reforming reactor that could make hydrogen available to power fuel cells wherever there’s a natural gas supply available.

By adding a catalyst, a hydrogen separating membrane and carbon dioxide sorbent to the century-old four-stroke engine cycle, researchers have demonstrated a laboratory-scale hydrogen reforming system that produces the green fuel at relatively low temperature in a process that can be scaled up or down to meet specific needs. The process could provide hydrogen at the point of use for residential fuel cells or neighborhood power plants, electricity and power production in natural-gas powered vehicles, fueling of municipal buses or other hydrogen-based vehicles, and supplementing intermittent renewable energy sources such as photovoltaics.

Known as the CO2/H2 Active Membrane Piston (CHAMP) reactor, the device operates at temperatures much lower than conventional steam reforming processes, consumes substantially less water and could also operate on other fuels such as methanol or bio-derived feedstock. It also captures and concentrates carbon dioxide emissions, a by-product that now lacks a secondary use – though that could change in the future.

Unlike conventional engines that run at thousands of revolutions per minute, the reactor operates at only a few cycles per minute – or more slowly – depending on the reactor scale and required rate of hydrogen production. And there are no spark plugs because there’s no fuel combusted. more>


How to play mathematics


The Pearly Gates of Cyberspace, Author: Margaret Wertheim.
Physics on the Fringe, Author: Margaret Wertheim.
African Fractals: Modern Computing and Indigenous Design, Author: Ron Eglash.

( Margaret Wertheim – The world is full of mundane, meek, unconscious things materially embodying fiendishly complex pieces of mathematics. How can we make sense of this? I’d like to propose that sea slugs and electrons, and many other modest natural systems, are engaged in what we might call the performance of mathematics.

Rather than thinking about maths, they are doing it.

In the fibers of their beings and the ongoing continuity of their growth and existence they enact mathematical relationships and become mathematicians-by-practice. By looking at nature this way, we are led into a consideration of mathematics itself not through the lens of its representational power but instead as a kind of transaction.

Rather than being a remote abstraction, mathematics can be conceived of as something more like music or dancing; an activity that takes place not so much in the writing down as in the playing out.

Since at least the time of Pythagoras and Plato, there’s been a great deal of discussion in Western philosophy about how we can understand the fact that many physical systems have mathematical representations: the segmented arrangements in sunflowers, pine cones and pineapples (Fibonacci numbers); the curve of nautilus shells, elephant tusks and rams horns (logarithmic spiral); music (harmonic ratios and Fourier transforms); atoms, stars and galaxies, which all now have powerful mathematical descriptors; even the cosmos as a whole, now represented by the equations of general relativity.

The physicist Eugene Wigner has termed this startling fact ‘the unreasonable effectiveness of mathematics’.

Why does the real world actualize maths at all? And so much of it?

Even arcane parts of mathematics, such as abstract algebras and obscure bits of topology often turn out to be manifest somewhere in nature. more>