Tag Archives: Electric vehicles

Is this Last Mile for the Million-Mile Battery?

Announcements from Tesla and CATL show that a long-lived, cobalt-free and competitively price EV and grid/home batteries may finally have arrived.
By John Blyler – The much discussed 1 million-mile (1.6 million kilometers) battery may now be a reality. As the name suggests, these batteries would last for 1 million miles without breaking down. Tesla, along with China-based Contemporary Amperex Technology (CATL), have announced such a battery that not only lasts longer but also costs less than $100/kWh and uses cobalt-free materials. Why are these two features important?

It has long been a metric for the success of electronic vehicles (EV) that their battery energy density be on parity with traditional gasoline-powered engines. Such a condition would allow EVs to compete with gasoline vehicles on both weight and range – especially the latter. This means that, if gasoline is 100 times more energy-dense than a battery, that a vehicle would need 100 lbs of battery to go as far as 1-lb of gasoline.

But past studies by the Argonne National Labs have shown that system efficiency is another key consideration when comparing EV and gasoline energy densities. The research lab noted that electric powertrains are far more efficient than powertrains powered by gasoline. In many cases, less than 20% of the energy contained in a gallon of gas actually gets converted to forward motion. After that power has been transmitted through a transmission and differential to the wheels, it would have suffered significantly more mechanical losses.

By contrast, an electric powertrain can be more than 90% efficient. This would suggest that the energy density of an EV battery could be far less than equivalent to a gasoline-powered vehicle and still come out ahead. more>

Related>

Updates from Siemens

Why noise is one of the biggest problems with electric cars
By Steven Dom – Imagine your company is engineering the next line of electric vehicles. You create technical specifications that reduce range anxiety, you’ve perfected the colors that pop and entice customers to buy and with battery technology advancement, you’ve priced it right.

But there are problems with electric cars.

Because the electric vehicle engine emits no noise, pedestrians are more likely to be struck by an electric vehicle. A study by the National Highway Traffic Safety Administration indicated that hybrid and electric vehicles are 57 percent more likely to cause accidents with cyclists, and 37 percent more likely to cause an accident with pedestrians, than a standard internal combustion engine vehicle.

Countries are requiring the quietest cars emit a sound to warn those around the vehicle of its presence.

Now, imagine after creating the ideal electric vehicle, the customers reject it based on the noise it emits. What if your vehicle’s noise is too strange or annoying?

This is just one of the many perils facing the quiet electric vehicle.

The goal of successfully getting an electric vehicle to market, one that a consumer would be interested in and enjoying, was about improving range. In a world lacking in electric vehicle infrastructure, solving range anxiety would allow customers to feel more comfortable driving the electric vehicles to-and-from work and longer trips beyond.

Engineers focused on vehicle architecture including the number of motors driving the wheels, managing the HVAC system’s energy consumption and finding ways to reduce weight, such as using thinner panels and less sound deadening components to provide better mileage. Without the roar of a combustion engine, there was no need to reduce noise. more>

Related>

Electric Vehicles Could Impact the Grid

By Kenny Walter – Researchers from the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have developed a new computer simulation to explore the impacts in-home charging could have on the nation’s grid.

“Previous research into the amount of energy required by homes hasn’t taken into account plug-in electric vehicles,” Matteo Muratori, a transportation and energy systems engineer at NREL said in a statement. “Given that more people are choosing to drive these types of vehicles and charging them at home, this additional demand should not be overlooked.”

According to the study, as more PEVs are added, the distribution infrastructure might no longer be able to reliably support the local electricity demand. more>

This is how Big Oil will die

By Seth Miller – The Keystone XL closed thanks to a confluence of technologies that came together faster than anyone in the oil and gas industry had ever seen. It’s hard to blame them — the transformation of the transportation sector over the last several years has been the biggest, fastest change in the history of human civilization, causing the bankruptcy of blue chip companies like Exxon Mobil and General Motors, and directly impacting over $10 trillion in economic output.

And blame for it can be traced to a beguilingly simple, yet fatal problem: the internal combustion engine has too many moving parts. more> https://goo.gl/dqLJW9