Tag Archives: Electronics

Updates from Ciena

Virtualizing the World of Cable
By Wayne Hickey – When cable operators saw huge demands in linear video, Video-on-Demand (VoD) and high-speed data services, and faced with an aging analog infrastructure, they moved to a Converged Cable Access Platform (CCAP) to increase capacity and throughput. CCAP combines headend functions into a single architecture by combing Edge Quadrature Amplitude Modulation (EQAM) and Cable Modem Termination System (CMTS).

Back in June 2011, CableLabs created CCAP by blending two competing platforms, a Comcast-backed Converged Multiservice Access Platform (CMAP) and a Time Warner Cable Converged Edge Services Access Router (CESAR) platform. The following year CCAP products were introduced, and deployed the year after.

Fast forward to today, cable operators are looking to implement software-based access platforms, migrate away from commonly deployed centralized, purpose-built CCAP equipment, and virtualize CCAP (vCCAP) — and thus begin the shift to a Distributed Access Architecture (DAA). Developed by CableLabs, vCCAP is the latest cable technologies that combines functions including the CMTS and EQAM.

Virtualizing and distributing MAC and PHY functions enables digital combining, eliminates analog optics with cost effective 10G Ethernet transport, and converts analog fiber nodes to digital optic IP-enabled devices. DAA makes it easier to push fiber deeper into the edge of the network, and along with the ability to support denser wavelengths for each fiber, digital optics greatly improves Carrier-to-Noise-Ratio (CNR), which will enable higher orders of QAM on the coax and higher performance DOCSIS technologies. more> https://goo.gl/EoPwPL

Related>

Embedded FPGAs Offer SoC Flexibility

By Dave Lammers – It was back in 1985 that Ross Freeman invented the FPGA, gaining a fundamental patent (#4,870,302) that promised engineers the ability to use “open gates” that could be “programmed to add new functionality, adapt to changing standards or specifications, and make last-minute design changes.”

Freeman, a co-founder of Xilinx, died in 1989, too soon to see the emerging development of embedded field programmable logic arrays (eFPGAs). The IP cores offer system-on-chip (SoC) designers an ability to create hardware accelerators and to support changing algorithms. Proponents claim the approach provides advantages to artificial intelligence (AI) processors, automotive ICs, and the SoCs used in data centers, software-defined networks, 5G wireless, encryption, and other emerging applications.

With mask costs escalating rapidly, eFPGAs offer a way to customize SoCs without spinning new silicon. While eFPGAs cannot compete with custom silicon in terms of die area, the flexibility, speed, and power consumption are proving attractive.

Achronix Semiconductor (Santa Clara, Calif.) has branched out from its early base in stand-alone FPGAs, using Intel’s 22nm process, to an IP model. It is emphasizing its embeddable Speedcore eFPGAs that can be added to SoCs using TSMC’s 16FF foundry process. 7nm IP cores are under development.

Efinix Inc. (Santa Clara recently rolled out its Efinix Programmable Accelerator (EPA) technology.

Efinix (efinixinc.com) claims that its programmable arrays can either compete with established stand-alone FPGAs on performance, but at half the power, or can be added as IP cores to SoCs. The Efinix Programmable Accelerator technology can provide a look up table (LUT)-based logic cell or a routing switch, among other functions, the company said. more> https://goo.gl/nXqYvV

Updates from GE

A Bright Idea: How LEDs Are Helping JPMorgan Chase Become Carbon Neutral
By Bruce Watson – When Mike Norton took over as managing director of real estate at JPMorgan Chase & Co. in 2015, he took on a weighty responsibility that included finding an efficient and sustainable way to oversee the branding, maintenance, upkeep and design of 6,000 branches and commercial properties around the world. It was a complex task that turned on a simple item: the light bulb.

Norton started talking to the energy management company Current, powered by GE. They devised a plan for a system focusing on improving energy efficiency, productivity and sustainability in nearly 4,500 Chase branches across the U.S. In 2016, that proposal turned into a deal for the world’s largest LED lighting installation, a project covering 25 million square feet of real estate that would eventually lead to energy savings equivalent to taking 27,000 cars off the road.

One year later, Current by GE has installed LEDs in 2,500 Chase branches. The original plan estimated that the installation would lead to 12 percent energy savings. But in reality, the savings have ranged from 15 to 50 percent, depending on the branch.

“It’s common sense: You take a 100-watt phosphorus light bulb and replace it with a 4-watt LED, and it’s going to lower energy usage by quite a bit,” Norton says. more> https://goo.gl/1UiEwV

Updates from Georgia Tech

You and Some ‘Cavemen’ Get a Genetic Health Check
By Ben Brumfield – Heart problems were much more common in the genes of our ancient ancestors than in ours today, according to a new study by geneticists at the Georgia Institute of Technology, who computationally compared genetic disease factors in modern humans with those of people through the millennia.

Overall, the news from the study is good. Evolution appears, through the ages, to have weeded out genetic influences that promote disease, while promulgating influences that protect from disease.

But for us modern folks, there’s also a hint of bad news. That generally healthy trend might have reversed in the last 500 to 1,000 years, meaning that, with the exception of cardiovascular ailments, disease risks found in our genes may be on the rise. For mental health, our genetic underpinnings look especially worse than those of our ancient forebears. more> https://goo.gl/txQhqU

Related>

X-rays from Copper Source Set New Gold Standard for Measuring Industrial Materials

By Alison Gillespie – Researchers at the National Institute of Standards and Technology (NIST) have produced and precisely measured a spectrum of X-rays using a new, state-of-the-art machine. The instrument they used to measure the X-rays took 20 years to develop, and will help scientists working at the agency make some of the world’s most accurate measurements of materials for use in everything from bridges to pharmaceuticals.

The process of building the instrument for making the new measurements was painstaking. “This new specialized precision instrument required both a tremendous amount of mechanical innovation and theoretical modeling,” said James Cline, project leader of the NIST team that built the machine.

“That we were able to dedicate so many years and such high-level scientific expertise to this project is reflective of NIST’s role in the world of science.” more> https://goo.gl/e0zrET

Updates from Aalto University

Aalto-2 satellite arrived at the International Space Station
By Jaan Praks – The robot arm was operated by US astronaut Peggy Whitson from NASA and French astronaut Thomas Pesquet from ESA.

‘I am glad that I could be a part of docking the Cygnus cargo spacecraft to the Space Station and welcome the QB50 satellites. They will be sent into space in May. One of them is Aalto-2 – the first satellite from Finland! I am very pleased that another European Space Agency member state is becoming “a true space nation”’, greeted Pesquet.

‘The Aalto-2 satellite will now spend a few weeks at the Space Station and wait for its turn to be launched. As the plan stands now, the small satellites will be detached to their orbits either on 8 or 15 May’, says Aalto Professor Jaan Praks, who is in charge of Aalto satellite projects. more> https://goo.gl/28ckbx

Related>

Updates from GE

Physicists Are ‘Breeding’ SchröDinger’s Cat, And It Could Reveal The Limits of The Quantum World
By Bec Crew – Physicists have figured out how to ‘breed’ Schrödinger’s cat – an object in a quantum superposition of two states with opposite properties – to produce enlarged versions that could one day reveal the limits of the quantum world.

If they can continue to breed their ‘cats’ even bigger, the experiment could finally reveal the exact point at which objects switch between classical and quantum physics – the divide between the microscopic and macroscopic worlds that physicists have been chasing for decades.

The original Schrödinger’s cat thought experiment states that if you put a live cat in an explosion-proof box with a bomb, until you open the box, you’ll have no idea if the bomb exploded and the cat died. Or maybe the bomb didn’t explode and the cat is still alive.

From our perspective, as long as the box is shut, the cat is occupying two realities. It’s both dead and alive, because we can’t confirm which one, but we know it can’t be neither.

This isn’t just a hypothetical question – in quantum physics, being in two different states at the same time is known as a superposition state, and it’s the entire basis of quantum computing, which is set to revolutionise how we process data in the future. more> https://goo.gl/XMFMB6

Updates from Georgia Tech

Surprising twist in confined liquid crystals: A simple route to developing new sensors
By Karthik Nayani, Jinxin Fu, Rui Chang, Jung Ok Park, and Mohan Srinivasarao – To answer some fundamental questions pertaining to the material’s phase behavior, the researchers used the microscopes to observe the molecules’ textures when they were confined to droplets known as tactoids.

“Surprisingly, we found a configuration that hasn’t been seen before in the 70 years that people have been studying liquid crystals,” said Mohan Srinivasarao, a professor in the Georgia Tech School of Materials Science and Engineering. “Historically, liquid crystals in tactoids conform to what is known as a bipolar and a bipolar configuration with a twist. At lower concentrations, we found that these liquid crystals arrange in a concentric fashion, but one that appears to be free of a singular defect.”

The researchers then used a simple model of the aggregation behavior of these molecules to explain these surprising results. Further, spectroscopic experiments using polarized Raman microscopy were performed to confirm their findings.

These new findings add to the growing understanding of how chromonic liquid crystals could be used in sensing applications, Srinivasarao said. more> https://goo.gl/YVq0TE

Related>

Turning Back Time: Watching Rust Transform into Iron

By W. Zhu, J.P. Winterstein, W.D. Yang, L. Yuan, R. Sharma and G. Zhou – Using a state-of-the-art microscopy technique, experimenters at the National Institute of Standards and Technology (NIST) and their colleagues have witnessed a slow-motion, atomic-scale transformation of rust—iron oxide—back to pure iron metal, in all of its chemical steps.

In a new effort to study the microscopic details of metal oxide reduction, researchers used a specially adapted transmission electron microscope (TEM) at NIST’s NanoLab facility to document the step-by-step transformation of nanocrystals of the iron oxide hematite (Fe2O3) to the iron oxide magnetite (Fe3O4), and finally to iron metal.

By lowering the temperature of the reaction and decreasing the pressure of the hydrogen gas that acted as the reducing agent, the scientists slowed down the reduction process so that it could be captured with an environmental TEM—a specially configured TEM that can study both solids and gas. The instrument enables researchers to perform atomic-resolution imaging of a sample under real-life conditions—in this case the gaseous environment necessary for iron oxides to undergo reduction–rather than under the vacuum needed in ordinary TEMs. more> https://goo.gl/8lJIAH

Updates from Aalto University

Launch times draw near for Aalto satellites
By Jaan Praks – The Aalto-2 satellite, designed and built by students, is ready and waiting to be launched inside the Cygnus space shuttle at the Cape Canaveral Space Launch Complex in the US.

On 22 March, the shuttle will be launched with an Atlas V booster rocket up to the orbiting international space station, where the astronauts will release it later to orbit independently.

Aalto-2 will take part in the international QB50 Mission, the aim of which is to produce the first ever comprehensive model of the features of the thermosphere, the layer between the Earth’s atmosphere and space. Dozens of satellites constructed in different countries will also be part of the mission.

Construction of the Aalto-2 satellite began in 2012 as a doctoral project when the first students graduated as Masters of Science in Technology after working on the Aalto-1 project.

Since the start of the Aalto-1 project in 2010 and the Aalto-2 project two years later, around a hundred new professionals have been trained in the space sector. The impact is already visible in the growth of space sector start-up companies. more> https://goo.gl/yKLrez

Related>