Tag Archives: Georgia Tech

Updates from Georgia Tech

Why Restarting the Global Economy Won’t be Easy
By Jerry Grillo – As the world contemplates ending a massive lockdown implemented in response to COVID-19, Vinod Singhal is considering what will happen when we hit the play button and the engines that drive industry and trade squeal back to life again.

Singhal, who studies operations strategy and supply chain management at the Georgia Institute of Technology, has a few ideas on how to ease the transition to the new reality. But this pandemic makes it hard to predict what that reality will be.

“There is really nothing to compare this pandemic to,” he said. “And predicting or estimating stock prices is simply impossible, unlike supply chain disruptions caused by a company’s own fault, or a natural disaster, like the earthquake in Japan.”

But COVID-19 represents a new kind of mystery when it comes to something as complex and critical to the world’s economy as the global supply chain, for a number of reasons that Singhal highlighted:

  • The global spread of the virus and duration of the pandemic. “We have no idea when it will be under control and whether it will resurface,” Singhal said. “With a natural disaster you can kind of predict that if we put in some effort, within a few months we can get back to normal. But here there is a lot of uncertainty.”
  • Both the demand and supply side of the global supply chain are disrupted. “We’re not only seeing a lot of factories shutting down, which affects the supply side, but there are restrictions on demand, too, because you can’t just go out and shop like you used to, at least for the time being,” he said. “And all this is taking place in an environment where supply chains are fairly complex – intricate, interconnected, interdependent, and global.”
  • Longer lead times. “We get close to a trillion dollars of products annually from Asian countries, about $500 billion from China,” Singhal said. “Most are shipped by sea which requires a four-to-six-week lead time. The fact that logistics and distribution has been disrupted and needs to ramp up again will increase lead time. So, it will take time to fill up the pipeline, and that is going to be an issue.”
  • Supply chains have little slack, and little spare inventory. While manufacturing giants such as Apple, Boeing, and General Motors have more financial slack to carry them through a massive economic belt tightening, their suppliers, spread out across the globe, come in different sizes, different tiers, “and these smaller companies don’t have much financial slack,” said Singhal, pointing to a report of small and medium sized companies in China, “which have less than three months of cash. They’ve already been shut down for two months, and cash tends to go away quickly.

“Many of these companies may go bankrupt,” he added. “So we need to figure out how to reduce the number of bankruptcies. Government is going to play an important role in this, and the stimulus package the U.S. has approved will be helpful.” more>


Updates from Georgia Tech

Interactive Tool Helps People See Why Staying Home Matters During a Pandemic
By Brittany Aiello – Social distancing has become one of the most impactful strategies in the battle to contain the spread of COVID-19, and a new interactive modeling tool can help people understand why it is so important to “flatten the curve.” Known as VERA, the artificial intelligence (AI) application was developed by researchers at the Georgia Institute of Technology to raise awareness about why it matters that individuals distance themselves during an infectious disease outbreak.

Led by College of Computing faculty members Ashok Goel and Spencer Rugaber, and Design & Intelligence Laboratory graduate researchers William Broniec and Sungeun An, the VERA Epidemiology project uses AI techniques to empower users to build their own visual models that simulate the impact of social distancing. The project evolved from earlier National Science Foundation-supported research on a virtual ecological research assistant that enables researchers to explore “what if” experiments about complex ecological phenomena.

The beauty of VERA is that users do not need a background in complex mathematical equations or computer programming to explore it. A high school student interested in finding out what it looks like to “flatten the curve” can log in to VERA and investigate. A parent handling middle school science lessons from home can log in to VERA and demonstrate the reason that it is important that they do lessons from home during the COVID-19 outbreak. more>


Updates from Georgia Tech

Scientists Transform Barbecue Lighter Into a High-Tech Lab Device
By Josh Brown – Researchers have devised a straightforward technique for building a laboratory device known as an electroporator – which applies a jolt of electricity to temporarily open cell walls – from inexpensive components, including a piezoelectric crystal taken from a butane lighter.

Plans for the device, known as the ElectroPen, are being made available, along with the files necessary for creating a 3D-printed casing.

“Our goal with the ElectroPen was to make it possible for high schools, budget-conscious laboratories, and even those working in remote locations without access to electricity to perform experiments or processes involving electroporation,” said M. Saad Bhamla, an assistant professor in Georgia Tech’s School of Chemical and Biomolecular Engineering. “This is another example of looking for ways to bypass economic limitations to advance scientific research by putting this capability into the hands of many more scientists and aspiring scientists.”

In a study reported January 10 in the journal PLOS Biology and sponsored by the National Science Foundation and the National Institutes of Health, the researchers detail the method for constructing the ElectroPen, which is capable of generating short bursts of more than 2,000 volts needed for a wide range of laboratory tasks.

One of the primary jobs of a cell membrane is to serve as a protective border, sheltering the inner workings of a living cell from the outside environment.

But all it takes is a brief jolt of electricity for that membrane to temporarily open and allow foreign molecules to flow in — a process called electroporation, which has been used for decades in molecular biology labs for tasks ranging from bacterial detection to genetic engineering. more>


Updates from Georgia Tech

Tiny Magnetic Particles Enable New Material to Bend, Twist, and Grab
By Josh Brown – A team of researchers from the Georgia Institute of Technology and The Ohio State University has developed a soft polymer material, called magnetic shape memory polymer, that uses magnetic fields to transform into a variety of shapes. The material could enable a range of new applications from antennas that change frequencies on the fly to gripper arms for delicate or heavy objects.

The material is a mixture of three different ingredients, all with unique characteristics: two types of magnetic particles, one for inductive heat and one with strong magnetic attraction, and shape-memory polymers to help lock various shape changes into place.

“This is the first material that combines the strengths of all of these individual components into a single system capable of rapid and reprogrammable shape changes that are lockable and reversible,” said Jerry Qi, a professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech. more>


Updates from Georgia Tech

Diversity May Be Key to Reducing Errors in Quantum Computing
By John Toon – In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

Unlike conventional computers, the processing in quantum-based machines is noisy, which produces error rates dramatically higher than those of silicon-based computers. So quantum operations are repeated thousands of times to make the correct answer stands out statistically from all the wrong ones.

But running the same operation over and over again on the same qubit set may just generate the same incorrect answers that can appear statistically to be the correct answer. The solution, according to researchers at the Georgia institute of Technology, is to repeat the operation on different qubit sets that have different error signatures – and therefore won’t produce the same correlated errors.

“The idea here is to generate a diversity of errors so you are not seeing the same error again and again,” said Moinuddin Qureshi, a professor in Georgia Tech’s School of Electrical and Computer Engineering, who worked out the technique with his senior Ph.D. student, Swamit Tannu. “Different qubits tend to have different error signatures. When you combine the results from diverse sets, the right answer appears even though each of them individually did not get the right answer,” said Tannu. more>


Updates from Georgia Tech

Tiny Vibration-Powered Robots Are the Size of the World’s Smallest Ant
By John Toon – Researchers have created a new type of tiny 3D-printed robot that moves by harnessing vibration from piezoelectric actuators, ultrasound sources or even tiny speakers. Swarms of these “micro-bristle-bots” might work together to sense environmental changes, move materials – or perhaps one day repair injuries inside the human body.

The prototype robots respond to different vibration frequencies depending on their configurations, allowing researchers to control individual bots by adjusting the vibration. Approximately two millimeters long – about the size of the world’s smallest ant – the bots can cover four times their own length in a second despite the physical limitations of their small size.

“We are working to make the technology robust, and we have a lot of potential applications in mind,” said Azadeh Ansari, an assistant professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. “We are working at the intersection of mechanics, electronics, biology and physics. It’s a very rich area and there’s a lot of room for multidisciplinary concepts.”

A paper describing the micro-bristle-bots has been accepted for publication in the Journal of Micromechanics and Microengineering. The research was supported by a seed grant from Georgia Tech’s Institute for Electronics and Nanotechnology. In addition to Ansari, the research team includes George W. Woodruff School of Mechanical Engineering Associate Professor Jun Ueda and graduate students DeaGyu Kim and Zhijian (Chris) Hao. more>


Updates from Georgia Tech

He Quieted Deafening Jets
By Ben Brumfield – In 1969, the roar of a passing jet airliner broke a bone in Carolyn Brobrek’s inner ear, as she sat in the living room of her East Boston home. Many flights took off too close to rooftops then, but even at a distance, jet engines were a notorious source of permanent hearing loss.

For decades, Krishan Ahuja tamed jet noise, for which the National Academy of Engineering elected him as a new member this year. Today, Ahuja is an esteemed researcher at the Georgia Institute of Technology, but he got his start more than 50 years ago as an engineering apprentice in Rolls Royce’s aero-engine division, eventually landing in its jet noise research department.

Jet-setters had been a rare elite, but early in Ahuja’s career in the 1970s, air travel went mainstream, connecting the globe. The number of flights multiplied over the years, and jet engine thrust grew stronger, but remarkably, human exposure to passenger jet noise in the same time period plummeted to a fraction of what it had once been, according to the Federal Aviation Administration.

Ahuja not only had a major hand in it, he also has felt the transition himself.

“In those days, if jets went over your house and you were outside, you’d feel like you needed to put your hands over your ears. Not today,” said Ahuja, who is a Regents Researcher at the Georgia Tech Research Institute (GTRI) and Regents Professor in Georgia Tech’s Daniel Guggenheim School of Aerospace Engineering. more>



Updates from Georgia Tech

Smart Communities Address Transportation, Housing, Flooding Challenges
By John Tibbetts – Four Georgia communities are exploring innovative technologies and collaborating with local partners and Georgia Institute of Technology research teams to help drive the state’s smart development.

Georgia Tech leads the pilot Georgia Smart Communities Challenge, which supports one-year projects to develop and implement smart design solutions to some of the biggest challenges facing the state.

The four selected localities were chosen from a pool of applicants statewide.The cities of Albany and Chamblee and the counties of Chatham and Gwinnett are focusing on pilot projects to improve local housing investments, address traffic and transportation challenges, and develop more targeted flooding forecasts of storms and sea level rise along Georgia’s coast.

A local government coordinates each project. But community and neighborhood groups, industry, and others are crucial collaborators. A Georgia Tech researcher conducts studies and provides guidance in pursuit of each project’s goals, supported by graduate and undergraduate students.

Each community has received $50,000 in grants and $25,000 from Georgia Tech in research support. Communities also raised matched funds. Georgia Power is the lead sponsor, with additional financial support from the Atlanta Regional Commission. The work began in September 2018 and will continue through September 2019.

Students are engaged through the research projects but also through two additional summer programs. The Georgia Smart Community Corps is a full-time, paid summer fellowship for Georgia Tech students to become part of the project team. It is a joint collaboration with the Strategic Energy Institute, Center for Serve-Learn-Sustain, Center for Career Discovery and Development, and the Student Government Association. more>


Updates from Georgia Tech

Signals from Distant Lightning Could Help Secure Electric Substations
By John Toon – Side channel signals and bolts of lightning from distant storms could one day help prevent hackers from sabotaging electric power substations and other critical infrastructure, a new study suggests.

By analyzing electromagnetic signals emitted by substation components using an independent monitoring system, security personnel could tell if switches and transformers were being tampered with in remote equipment. Background lightning signals from thousands of miles away would authenticate those signals, preventing malicious actors from injecting fake monitoring information into the system.

The research, done by engineers at the Georgia Institute of Technology, has been tested at substations with two different electric utilities, and by extensive modeling and simulation. Known as radio frequency-based distributed intrusion detection system (RFDIDS), the technique was described February 26 at the 2019 Network and Distributed System Security Symposium (NDSS) in San Diego.

“We should be able to remotely detect any attack that is modifying the magnetic field around substation components,” said Raheem Beyah, Motorola Foundation Professor in Georgia Tech’s School of Electrical and Computer Engineering and co-founder of Fortiphyd Logic, Inc. “We are using a physical phenomenon to determine whether a certain action at a substation has occurred or not.”

Opening substation breakers to cause a blackout is one potential power grid attack, and in December 2015, that technique was used to shut off power to 230,000 persons in the Ukraine. Attackers opened breakers in 30 substations and hacked into monitoring systems to convince power grid operators that the grid was operating normally. Topping that off, they also attacked call centers to prevent customers from telling operators what was happening. more>


Updates from Georgia Tech

Brilliant Glow of Paint-On Semiconductors Comes from Ornate Quantum Physics
By Ben Brumfield – LED lights and monitors, and quality solar panels were born of a revolution in semiconductors that efficiently convert energy to light or vice versa. Now, next-generation semiconducting materials are on the horizon, and in a new study, researchers have uncovered eccentric physics behind their potential to transform lighting technology and photovoltaics yet again.

Comparing the quantum properties of these emerging so-called hybrid semiconductors with those of their established predecessors is about like comparing the Bolshoi Ballet to jumping jacks. Twirling troupes of quantum particles undulate through the emerging materials, creating, with ease, highly desirable optoelectronic (light-electronic) properties, according to a team of physical chemists led by researchers at the Georgia Institute of Technology.

These same properties are impractical to achieve in established semiconductors.

The particles moving through these new materials also engage the material itself in the quantum action, akin to dancers enticing the floor to dance with them. The researchers were able to measure patterns in the material caused by the dancing and relate them to the emerging material’s quantum properties and to energy introduced into the material.

These insights could help engineers work productively with the new class of semiconductors. more>