Tag Archives: Georgia Tech

Updates from Georgia Tech

Diversity May Be Key to Reducing Errors in Quantum Computing
By John Toon – In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

Unlike conventional computers, the processing in quantum-based machines is noisy, which produces error rates dramatically higher than those of silicon-based computers. So quantum operations are repeated thousands of times to make the correct answer stands out statistically from all the wrong ones.

But running the same operation over and over again on the same qubit set may just generate the same incorrect answers that can appear statistically to be the correct answer. The solution, according to researchers at the Georgia institute of Technology, is to repeat the operation on different qubit sets that have different error signatures – and therefore won’t produce the same correlated errors.

“The idea here is to generate a diversity of errors so you are not seeing the same error again and again,” said Moinuddin Qureshi, a professor in Georgia Tech’s School of Electrical and Computer Engineering, who worked out the technique with his senior Ph.D. student, Swamit Tannu. “Different qubits tend to have different error signatures. When you combine the results from diverse sets, the right answer appears even though each of them individually did not get the right answer,” said Tannu. more>


Updates from Georgia Tech

Tiny Vibration-Powered Robots Are the Size of the World’s Smallest Ant
By John Toon – Researchers have created a new type of tiny 3D-printed robot that moves by harnessing vibration from piezoelectric actuators, ultrasound sources or even tiny speakers. Swarms of these “micro-bristle-bots” might work together to sense environmental changes, move materials – or perhaps one day repair injuries inside the human body.

The prototype robots respond to different vibration frequencies depending on their configurations, allowing researchers to control individual bots by adjusting the vibration. Approximately two millimeters long – about the size of the world’s smallest ant – the bots can cover four times their own length in a second despite the physical limitations of their small size.

“We are working to make the technology robust, and we have a lot of potential applications in mind,” said Azadeh Ansari, an assistant professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. “We are working at the intersection of mechanics, electronics, biology and physics. It’s a very rich area and there’s a lot of room for multidisciplinary concepts.”

A paper describing the micro-bristle-bots has been accepted for publication in the Journal of Micromechanics and Microengineering. The research was supported by a seed grant from Georgia Tech’s Institute for Electronics and Nanotechnology. In addition to Ansari, the research team includes George W. Woodruff School of Mechanical Engineering Associate Professor Jun Ueda and graduate students DeaGyu Kim and Zhijian (Chris) Hao. more>


Updates from Georgia Tech

He Quieted Deafening Jets
By Ben Brumfield – In 1969, the roar of a passing jet airliner broke a bone in Carolyn Brobrek’s inner ear, as she sat in the living room of her East Boston home. Many flights took off too close to rooftops then, but even at a distance, jet engines were a notorious source of permanent hearing loss.

For decades, Krishan Ahuja tamed jet noise, for which the National Academy of Engineering elected him as a new member this year. Today, Ahuja is an esteemed researcher at the Georgia Institute of Technology, but he got his start more than 50 years ago as an engineering apprentice in Rolls Royce’s aero-engine division, eventually landing in its jet noise research department.

Jet-setters had been a rare elite, but early in Ahuja’s career in the 1970s, air travel went mainstream, connecting the globe. The number of flights multiplied over the years, and jet engine thrust grew stronger, but remarkably, human exposure to passenger jet noise in the same time period plummeted to a fraction of what it had once been, according to the Federal Aviation Administration.

Ahuja not only had a major hand in it, he also has felt the transition himself.

“In those days, if jets went over your house and you were outside, you’d feel like you needed to put your hands over your ears. Not today,” said Ahuja, who is a Regents Researcher at the Georgia Tech Research Institute (GTRI) and Regents Professor in Georgia Tech’s Daniel Guggenheim School of Aerospace Engineering. more>



Updates from Georgia Tech

Smart Communities Address Transportation, Housing, Flooding Challenges
By John Tibbetts – Four Georgia communities are exploring innovative technologies and collaborating with local partners and Georgia Institute of Technology research teams to help drive the state’s smart development.

Georgia Tech leads the pilot Georgia Smart Communities Challenge, which supports one-year projects to develop and implement smart design solutions to some of the biggest challenges facing the state.

The four selected localities were chosen from a pool of applicants statewide.The cities of Albany and Chamblee and the counties of Chatham and Gwinnett are focusing on pilot projects to improve local housing investments, address traffic and transportation challenges, and develop more targeted flooding forecasts of storms and sea level rise along Georgia’s coast.

A local government coordinates each project. But community and neighborhood groups, industry, and others are crucial collaborators. A Georgia Tech researcher conducts studies and provides guidance in pursuit of each project’s goals, supported by graduate and undergraduate students.

Each community has received $50,000 in grants and $25,000 from Georgia Tech in research support. Communities also raised matched funds. Georgia Power is the lead sponsor, with additional financial support from the Atlanta Regional Commission. The work began in September 2018 and will continue through September 2019.

Students are engaged through the research projects but also through two additional summer programs. The Georgia Smart Community Corps is a full-time, paid summer fellowship for Georgia Tech students to become part of the project team. It is a joint collaboration with the Strategic Energy Institute, Center for Serve-Learn-Sustain, Center for Career Discovery and Development, and the Student Government Association. more>


Updates from Georgia Tech

Signals from Distant Lightning Could Help Secure Electric Substations
By John Toon – Side channel signals and bolts of lightning from distant storms could one day help prevent hackers from sabotaging electric power substations and other critical infrastructure, a new study suggests.

By analyzing electromagnetic signals emitted by substation components using an independent monitoring system, security personnel could tell if switches and transformers were being tampered with in remote equipment. Background lightning signals from thousands of miles away would authenticate those signals, preventing malicious actors from injecting fake monitoring information into the system.

The research, done by engineers at the Georgia Institute of Technology, has been tested at substations with two different electric utilities, and by extensive modeling and simulation. Known as radio frequency-based distributed intrusion detection system (RFDIDS), the technique was described February 26 at the 2019 Network and Distributed System Security Symposium (NDSS) in San Diego.

“We should be able to remotely detect any attack that is modifying the magnetic field around substation components,” said Raheem Beyah, Motorola Foundation Professor in Georgia Tech’s School of Electrical and Computer Engineering and co-founder of Fortiphyd Logic, Inc. “We are using a physical phenomenon to determine whether a certain action at a substation has occurred or not.”

Opening substation breakers to cause a blackout is one potential power grid attack, and in December 2015, that technique was used to shut off power to 230,000 persons in the Ukraine. Attackers opened breakers in 30 substations and hacked into monitoring systems to convince power grid operators that the grid was operating normally. Topping that off, they also attacked call centers to prevent customers from telling operators what was happening. more>


Updates from Georgia Tech

Brilliant Glow of Paint-On Semiconductors Comes from Ornate Quantum Physics
By Ben Brumfield – LED lights and monitors, and quality solar panels were born of a revolution in semiconductors that efficiently convert energy to light or vice versa. Now, next-generation semiconducting materials are on the horizon, and in a new study, researchers have uncovered eccentric physics behind their potential to transform lighting technology and photovoltaics yet again.

Comparing the quantum properties of these emerging so-called hybrid semiconductors with those of their established predecessors is about like comparing the Bolshoi Ballet to jumping jacks. Twirling troupes of quantum particles undulate through the emerging materials, creating, with ease, highly desirable optoelectronic (light-electronic) properties, according to a team of physical chemists led by researchers at the Georgia Institute of Technology.

These same properties are impractical to achieve in established semiconductors.

The particles moving through these new materials also engage the material itself in the quantum action, akin to dancers enticing the floor to dance with them. The researchers were able to measure patterns in the material caused by the dancing and relate them to the emerging material’s quantum properties and to energy introduced into the material.

These insights could help engineers work productively with the new class of semiconductors. more>


Updates from Georgia Tech

Growing Pile of Human and Animal Waste Harbors Threats, Opportunities
By Josh Brown – As demand for meat and dairy products increases across the world, much attention has landed on how livestock impact the environment, from land usage to greenhouse gas emissions.

Now researchers at Georgia Institute of Technology and the Centers for Disease Control and Prevention are highlighting another effect from animals raised for food and the humans who eat them: the waste they all leave behind.

In a paper published November 13 in Nature Sustainability, the research team put forth what they believe is the first global estimate of annual recoverable human and animal fecal biomass. In 2014, the most recent year with data, the number was 4.3 billion tons and growing, and waste from livestock outweighed that from humans five to one at the country level.

“Exposure to both human and animal waste represent a threat to public health, particularly in low-income areas of the world that may not have resources to implement the best management and sanitation practices,” said Joe Brown, an assistant professor in Georgia Tech’s School of Civil and Environmental Engineering. “But estimating the amount of recoverable feces in the world also highlights the enormous potential from a resource perspective.” more>


Updates from Georgia Tech

Finally, a Robust Fuel Cell that Runs on Methane at Practical Temperatures
By Ben Brumfield – Fuel cells have not been particularly known for their practicality and affordability, but that may have just changed. There’s a new cell that runs on cheap fuel at temperatures comparable to automobile engines and which slashes materials costs.

Though the cell is in the lab, it has high potential to someday electrically power homes and perhaps cars, say the researchers at the Georgia Institute of Technology who led its development. In a new study in the journal Nature Energy the researchers detailed how they reimagined the entire fuel cell with the help of a newly invented fuel catalyst.

The catalyst has dispensed with high-priced hydrogen fuel by making its own out of cheap, readily available methane. And improvements throughout the cell cooled the seething operating temperatures that are customary in methane fuel cells dramatically, a striking engineering accomplishment. more>


Updates from Georgia Tech

Looking Back in Time to Watch for a Different Kind of Black Hole
By John Toon – Black holes form when stars die, allowing the matter in them to collapse into an extremely dense object from which not even light can escape. Astronomers theorize that massive black holes could also form at the birth of a galaxy, but so far nobody has been able to look far enough back in time to observe the conditions creating these direct collapse black holes (DCBH).

The James Webb Space Telescope, scheduled for launch in 2021, might be able look far enough back into the early Universe to see a galaxy hosting a nascent massive black hole. Now, a simulation done by researchers at the Georgia Institute of Technology has suggested what astronomers should look for if they search the skies for a DCBH in its early stages.

DCBH formation would be initiated by the collapse of a large cloud of gas during the early formation of a galaxy, said John H. Wise, a professor in Georgia Tech’s School of Physics and the Center for Relativistic Astrophysics. But before astronomers could hope to catch this formation, they would have to know what to look for in the spectra that the telescope could detect, which is principally infrared.

Black holes take about a million years to form, a blip in galactic time. In the DCBH simulation, that first step involves gas collapsing into a supermassive star as much as 100,000 times more massive than our sun. The star then undergoes gravitational instability and collapses into itself to form a massive black hole. Radiation from the black hole then triggers the formation of stars over period of about 500,000 years, the simulation suggested. more>


Updates from Georgia Tech

Neuroscientists Team with Engineers to Explore how the Brain Controls Movement
By Carol Clark – Scientists have made remarkable advances into recording the electrical activity that the nervous system uses to control complex skills, leading to insights into how the nervous system directs an animal’s behavior.

“We can record the electrical activity of a single neuron, and large groups of neurons, as animals learn and perform skilled behaviors,” says Samuel Sober, an associate professor of biology at Emory University who studies the brain and nervous system. “What’s missing,” he adds, “is the technology to precisely record the electrical signals of the muscles that ultimately control that movement.”

The Sober lab is now developing that technology through a collaboration with the lab of Muhannad Bakir, a professor in Georgia Tech’s School of Electrical and Computer Engineering.

The technology will be used to help understand the neural control of many different skilled behaviors to potentially gain insights into neurological disorders that affect motor control.

“By combining expertise in the life sciences at Emory with the engineering expertise of Georgia Tech, we are able to enter new scientific territory,” Bakir says. “The ultimate goal is to make discoveries that improve the quality of life of people.” more>