Tag Archives: Physics

Updates from GE

A Bright Idea: How LEDs Are Helping JPMorgan Chase Become Carbon Neutral
By Bruce Watson – When Mike Norton took over as managing director of real estate at JPMorgan Chase & Co. in 2015, he took on a weighty responsibility that included finding an efficient and sustainable way to oversee the branding, maintenance, upkeep and design of 6,000 branches and commercial properties around the world. It was a complex task that turned on a simple item: the light bulb.

Norton started talking to the energy management company Current, powered by GE. They devised a plan for a system focusing on improving energy efficiency, productivity and sustainability in nearly 4,500 Chase branches across the U.S. In 2016, that proposal turned into a deal for the world’s largest LED lighting installation, a project covering 25 million square feet of real estate that would eventually lead to energy savings equivalent to taking 27,000 cars off the road.

One year later, Current by GE has installed LEDs in 2,500 Chase branches. The original plan estimated that the installation would lead to 12 percent energy savings. But in reality, the savings have ranged from 15 to 50 percent, depending on the branch.

“It’s common sense: You take a 100-watt phosphorus light bulb and replace it with a 4-watt LED, and it’s going to lower energy usage by quite a bit,” Norton says. more> https://goo.gl/1UiEwV

Updates from Georgia Tech

Driving Cassini: Doctoral Student Controls Spacecraft in Mission’s Final Days

By Jason Maderer – When the Cassini spacecraft plunges into Saturn on September 15 to end a nearly two-decade mission, Georgia Tech student Michael Staab will have a front row seat. It’s almost literally the driver’s seat.

Staab is working at NASA’s Jet Propulsion Laboratory (JPL) in California while pursuing his aerospace engineering doctoral degree in the distance learning program. He’s a Cassini Spacecraft Flight Controller, which means he’s one of only three people authorized to tell the machine what to do and where to go as it orbits Saturn.

The job is almost finished. Just before 8 a.m. (Atlanta time) on Friday, Staab will hear Cassini’s signal for the final time before it dives into the planet’s atmosphere, becoming a part of Saturn.

Prior to attending Georgia Tech, I was a flight test engineering intern at NASA’s Armstrong Flight Research Center at Edwards Air Force Base in California and, later, a test requirements and analysis engineer for Boeing in St. Louis. I had a lot of control room and operations experience, which is exactly what JPL was looking for.

The duty of a flight controller at JPL is fairly straight-forward; we possess absolute command and control authority of the spacecraft when tracking it through the Deep-Space Network. more> https://goo.gl/aAU76G


What Happens When Quantum Physics Meets Cryptography?

By Paulina Gomez – In today’s world of ever-increasing security threats and breaches, encryption is a common technique used to protect critical information from getting into the wrong hands. In cryptography, encryption is the process of encoding a plaintext message in such a way that only authorized parties can access it. The result of this process is encrypted information, also known as ciphertext. But how is this done exactly? The plaintext message is transformed using an algorithm (or cipher) to make it unreadable to anyone except those possessing special knowledge, which is referred to as the key.

Today’s state-of-art secure communications use advanced mathematics to protect in-flight data leveraging highly secure algorithms, such as in Ciena’s WaveLogic Encryption solution. Even though many cryptographic algorithms used today are publicly available, such as the popular Advanced Encryption Standard (AES), they are very difficult to crack in a reasonable amount of time given the computational power of today’s computers. In fact, the keys used in modern cryptography are so large that breaking the AES-256 standard would require “fifty supercomputers that could check a billion billion (1018) AES keys per second [and] would, in theory, require about 3×1051 years.”

The field of Quantum Cryptography is an area of security research and development focused on the introduction of new technologies that will offer more resistance to the computing power of quantum computers. Quantum cryptography draws its strength from the unpredictable nature of photons – the smallest particles in the universe. more> https://goo.gl/FTh77p

The idea of creating a new universe in the lab is no joke

By Zeeya Merali – There’s an established principle in quantum theory that pairs of particles can spontaneously, momentarily pop out of empty space. Alex Vilenkin took this notion a step further, arguing that quantum rules could also enable a minuscule bubble of space itself to burst into being from nothing, with the impetus to then inflate to astronomical scales.

Our cosmos could thus have been burped into being by the laws of physics alone. Many cosmologists have made peace with the notion of a universe without a prime mover, divine or otherwise.

.. flipping the problem around, I started to wonder: what are the implications of humans even considering the possibility of one day making a universe that could become inhabited by intelligent life? As I discuss in my book A Big Bang in a Little Room (2017), current theory suggests that, once we have created a new universe, we would have little ability to control its evolution or the potential suffering of any of its residents. Wouldn’t that make us irresponsible and reckless deities?

We will not be creating baby universes anytime soon, but scientists in all areas of research must feel able to freely articulate the implications of their work without concern for causing offence. Cosmogenesis is an extreme example that tests the principle.

Parallel ethical issues are at stake in the more near-term prospects of creating artificial intelligence or developing new kinds of weapons, for instance.

As Anders Sandberg put it, although it is understandable that scientists shy away from philosophy, afraid of being thought weird for veering beyond their comfort zone, the unwanted result is that many of them keep quiet on things that really matter. more> https://goo.gl/GjCJpd

Updates from Georgia Tech

Decades of Data on World’s Oceans Reveal a Troubling Oxygen Decline
By Takamitsu Ito, Shoshiro Minobe, Matthew C. Long and Curtis Deutsch – A new analysis of decades of data on oceans across the globe has revealed that the amount of dissolved oxygen contained in the water – an important measure of ocean health – has been declining for more than 20 years.

The majority of the oxygen in the ocean is absorbed from the atmosphere at the surface or created by photosynthesizing phytoplankton. Ocean currents then mix that more highly oxygenated water with subsurface water. But rising ocean water temperatures near the surface have made it more buoyant and harder for the warmer surface waters to mix downward with the cooler subsurface waters. Melting polar ice has added more freshwater to the ocean surface – another factor that hampers the natural mixing and leads to increased ocean more> stratification.

Falling oxygen levels in water have the potential to impact the habitat of marine organisms worldwide and in recent years led to more frequent “hypoxic events” that killed or displaced populations of fish, crabs and many other organisms. more> https://goo.gl/3F17TB


X-rays from Copper Source Set New Gold Standard for Measuring Industrial Materials

By Alison Gillespie – Researchers at the National Institute of Standards and Technology (NIST) have produced and precisely measured a spectrum of X-rays using a new, state-of-the-art machine. The instrument they used to measure the X-rays took 20 years to develop, and will help scientists working at the agency make some of the world’s most accurate measurements of materials for use in everything from bridges to pharmaceuticals.

The process of building the instrument for making the new measurements was painstaking. “This new specialized precision instrument required both a tremendous amount of mechanical innovation and theoretical modeling,” said James Cline, project leader of the NIST team that built the machine.

“That we were able to dedicate so many years and such high-level scientific expertise to this project is reflective of NIST’s role in the world of science.” more> https://goo.gl/e0zrET

Updates from Georgia Tech

Surprising twist in confined liquid crystals: A simple route to developing new sensors
By Karthik Nayani, Jinxin Fu, Rui Chang, Jung Ok Park, and Mohan Srinivasarao – To answer some fundamental questions pertaining to the material’s phase behavior, the researchers used the microscopes to observe the molecules’ textures when they were confined to droplets known as tactoids.

“Surprisingly, we found a configuration that hasn’t been seen before in the 70 years that people have been studying liquid crystals,” said Mohan Srinivasarao, a professor in the Georgia Tech School of Materials Science and Engineering. “Historically, liquid crystals in tactoids conform to what is known as a bipolar and a bipolar configuration with a twist. At lower concentrations, we found that these liquid crystals arrange in a concentric fashion, but one that appears to be free of a singular defect.”

The researchers then used a simple model of the aggregation behavior of these molecules to explain these surprising results. Further, spectroscopic experiments using polarized Raman microscopy were performed to confirm their findings.

These new findings add to the growing understanding of how chromonic liquid crystals could be used in sensing applications, Srinivasarao said. more> https://goo.gl/YVq0TE


The Spiritual, Reductionist Consciousness of Christof Koch

By Steve Paulson – Consciousness is a buzzing business in neuroscience labs and brain institutes. But it wasn’t always this way. Just a few decades ago, consciousness barely registered as a credible subject for science.

Why were humans able to create civilizations that have transformed the planet?

We don’t have a precise answer. We have big brains and are, by some measure, the most intelligent species, at least in the short term. We’ll see whether we’ll actually survive in the long term, given our propensity for mass violence. And we’ve manipulated the planet to such an extent that we are now talking about entering a new geological age, the Anthropocene.

But it’s unclear why whales or dolphins—some of which have bigger brains and more neurons in their cortex than we do—why they are not called smarter or more successful. Maybe because they have flippers and live in the ocean, which is a relatively static environment. With flippers, you’re unable to build sophisticated tools.

Of course, human civilization is all about tools, whether it’s a little stone, an arrow, a bomb, or a computer. more> https://goo.gl/bmNgK6


Turning Back Time: Watching Rust Transform into Iron

By W. Zhu, J.P. Winterstein, W.D. Yang, L. Yuan, R. Sharma and G. Zhou – Using a state-of-the-art microscopy technique, experimenters at the National Institute of Standards and Technology (NIST) and their colleagues have witnessed a slow-motion, atomic-scale transformation of rust—iron oxide—back to pure iron metal, in all of its chemical steps.

In a new effort to study the microscopic details of metal oxide reduction, researchers used a specially adapted transmission electron microscope (TEM) at NIST’s NanoLab facility to document the step-by-step transformation of nanocrystals of the iron oxide hematite (Fe2O3) to the iron oxide magnetite (Fe3O4), and finally to iron metal.

By lowering the temperature of the reaction and decreasing the pressure of the hydrogen gas that acted as the reducing agent, the scientists slowed down the reduction process so that it could be captured with an environmental TEM—a specially configured TEM that can study both solids and gas. The instrument enables researchers to perform atomic-resolution imaging of a sample under real-life conditions—in this case the gaseous environment necessary for iron oxides to undergo reduction–rather than under the vacuum needed in ordinary TEMs. more> https://goo.gl/8lJIAH

A Brief History of the Grand Unified Theory of Physics

By Lawrence M. Krauss – Each time we peel back one layer of reality, other layers beckon. So each important new development in science generally leaves us with more questions than answers. But it also usually leaves us with at least the outline of a road map to help us begin to seek answers to those questions.

The successful discovery of the Higgs particle, and with it the validation of the existence of an invisible background Higgs field throughout space (in the quantum world, every particle like the Higgs is associated with a field), was a profound validation of the bold scientific developments of the 20th century.

As elegant as this idea might be, it is essentially an ad hoc addition to the Standard Model of physics—which explains three of the four known forces of nature, and how these forces interact with matter. It is added to the theory to do what is required to accurately model the world of our experience. But it is not required by the theory. The universe could have happily existed with massless particles and a long-range weak force (which, along with the strong force, gravity, and electromagnetism, make up the four known forces). We would just not be here to ask about them. Moreover, the detailed physics of the Higgs is undetermined within the Standard Model alone. The Higgs could have been 20 times heavier, or 100 times lighter.

Why, then, does the Higgs exist at all? And why does it have the mass it does? (Recognizing that whenever scientists ask “Why?” we really mean “How?”) If the Higgs did not exist, the world we see would not exist, but surely that is not an explanation. Or is it? Ultimately to understand the underlying physics behind the Higgs is to understand how we came to exist. When we ask, “Why are we here?,” at a fundamental level we may as well be asking, “Why is the Higgs here?” more> https://goo.gl/UCn3w8