Tag Archives: Product lifecycle management

Updates from Siemens

Transforming the Capital Asset Lifecycle – Part 1
By John Lusty – “Innovate or die”. Three years ago, in the global oil & gas industry, this was the dire message communicated from the boardroom to the operating plant as falling commodity prices were hollowing out corporate income statements. The same story echoed through the supply chain as engineering contractors and equipment manufacturers fought for survival – trying to win enough work to remain healthy within a shrinking capital project market while creating greater value from the existing capital asset lifecycle.

The cost-cutting that ensued was ugly, and the job losses were substantial. In parallel, the appetite for innovative ideas sky-rocketed as producers worked to wring out costs and remain profitable at any price. This triggered a new behavior within the traditionally siloed energy industry, for the first-time visionaries started to look to other manufacturing industries for capabilities that could be adapted to their own companies.

What they saw was a shock. Despite years of investing in software and technology, capital asset owners in the energy and process industries still had a long way to go to get full value from their technical information compared to other, more mature, industries. Unlike their business information which, to a greater degree, had been consolidated following two decades of ERP implementations, the technical information supporting their plant assets was still scattered across different locations and incompatible file formats.

To make matters worse, data from multiple projects and facilities used software from a variety of vendors along with their own standards and specifications. Plants that came in through acquisitions and mergers were even more unique. more>

Related>

Updates from Siemens

Paragon VTOL Aerospace adopts solutions from Siemens to streamline next-generation design
By Alisa Coffey – The need for increased performance and reduced time-to-market has led Paragon VTOL Aerospace, a global vertical take-off and landing (VTOL) aircraft provider for numerous industries, to adopt solutions from Siemens Digital Industries Software through its product development process. Paragon produces industry-specific drone hardware ranging from security applications for agricultural theft and commuter law adherence to human passenger drones.

Paragon is also partnering with Aerotropolis Jamaica, a national project spearheaded by the Hon. L. Michael Henry in the Office of the Prime Minister, to build an ecosystem for Urban Air Mobility (UAM). The company plans to achieve positive results by reducing time and cost of its product development and testing through implementation of key technology from Siemens.

“Our vision is to provide a portfolio of intellectual property, industry specific drones, human passenger drones, and virtual highway platforms in Jamaica,” said Paragon VTOL founder and oil executive Dwight Smith, a native Jamaican and American citizen. “We currently have plans to implement software and hardware programs in 2019 and begin testing their two to four passenger drones by year-end 2019.”

Paragon has been developing their platform and much of the technology through collaboration with Siemens, major American universities, Silicon Valley experts, and ex-military personnel. Siemens is providing an integrated set of software solutions including STAR-CCM+, Simcenter, and NX for Paragon to design, test, produce, and monitor its extensive range of drone systems. more>

Related>

Updates from Siemens

Electronics manufacturer controls its production with plant simulation
Siemens Manufacturing Karlsruhe uses the Plant Simulation solution in the Tecnomatix portfolio within the framework of its continuous improvement process
Siemens – Electronics can be produced in Germany at competitive market prices only as long as the manufacturing process is continuously improved. For this reason, the Siemens Manufacturing-Karlsruhe (MF-K) plant introduced the Plant Simulation solution in the Tecnomatix® portfolio to support the company’s continuous improvement process. Today, not only are production lines simulated before they are built, but workers actually control daily production using the software.

“Our mission is 100 percent quality, 100 percent delivery performance and 100 percent waste-free,” says Bernd Schmid, plant manager at Siemens MF-K. “That means we want to manufacture our products with as few resources as possible. This requires that the manufacturing processes operate how we envision them to. Plant Simulation is a big help to that end.” For its consistent use of simulation software, Siemens MF-K was recently named one of the winners of “100 Places for Industry 4.0 in Baden-Wuerttemberg.” The jury of experts recognized the company for practical concepts that intelligently combined production and value chains.

Siemens MF-K is a prime example of the challenges that manufacturing companies are mastering with the help of Industry 4.0: a high degree of variance, continuously shrinking batch sizes and fluctuations in order volume that are increasingly difficult to predict.

For example, the plant manufactures 125,000 industrial personal computers (PCs) per year, but the average batch size per order is a mere 1.8. From 90 million different possible variations to choose from in the configurator, approximately 10,000 are actually used. The life of an industrial PC generation is 2.5 years − short compared to the proven SIMATIC controllers, but long compared to industrial communications where a new product has to be produced every two days. more>

Related>

Updates from Siemens

BAR Technologies uses Siemens Digital Industries Software solutions to create a new class of sport yacht
Siemens – With an optimized hull and dynamically adjusting foils that enable greater efficiency over a wider range of speeds, it’s a boat designed for both performance and comfort. The Princess Yachts R35 was made possible by BAR Technologies, which uses highly specialized techniques and processes when designing an America’s Cup racing yacht. BAR Technologies is now offering its unique expertise to customers across the marine industry.

Princess Yachts first approached BAR Technologies with the aim of creating a completely new design that would attract people who had not previously considered buying a boat. The new design was to be an entry-level purchase: a day boat that was exciting yet easy to drive. Paul Mackenzie, director of product development at Princess Yachts, explains: “We have a very high percentage of return customers and once they are in the Princess family they tend to move up our range, so introductory boats have always been important. However, most people who buy a Princess are already boat enthusiasts. We were looking to expand our potential market, closing the gap between boat owner and car owner, with a product that could be positioned alongside a super car.”

Simon Schofield, chief technology officer at BAR Technologies, adds “Our brief was to devise a technically driven design with increased efficiency and accessible performance, yet retain the luxury and quality that Princess is known for. The digital modeling and simulation tools and techniques that we have established over several years were critical to the fulfillment of the brief.”

The integrated virtual environment at BAR Technologies uses solutions from Siemens Digital Industries Software. These include NX™ software for product design,Teamcenter® software for data management and the Simcenter™ software portfolio, which includes Simcenter™ Nastran® for engineering analysis and Simcenter STAR-CCM+® software for computational fluid dynamics (CFD) analysis. more>

Related>

Updates from Siemens

Well control equipment: Metal hat, Fireproof coveralls… CFD
nullBy Gaetan Bouzard – In the Oil & Gas industry, the integration of possible risk linked with well control — such as subsea plume, atmospheric dispersion, fire and explosion — is critical for minimizing impact on the entire system or on operations efficiency, and for ensuring worker health and safety. Risk to system integrity must be prevented at the design phase, but also addressed in case hazards happen along equipment lifetime or system in operation.

Last September 25th, Mr. Alistair E. Gill, from company Wild Well Control demonstrates the value of advanced structural and fluid dynamics mechanics simulation for well controls, emergency response and planning, as part of a Live Webinar organized by Siemens and Society of Petroleum Engineers. In this article I will try to summarize his presentation. To have more insights feel free to watch our On-Demand Webinar.

To be honest when talking about well control for Oil & Gas industry, people usual conception is that some disaster happened and guys wearing protections are trying to light off a big fire. Actually companies such as Wild Well Control are using modern and innovative techniques as Computational Fluid Dynamics (CFD) simulation to support practical team on a well control incident trying to keep asset integrity at the same time.

Mr. Gill provides several examples to demonstrate simulation techniques that were used from

  • Subsea plume and gas dispersion modeling to understand where hydrocarbons go in the event of a blow out
  • Radiant heat modeling in case of a fire
  • Erosion modeling
  • Thermal as well as Structural analysis

There is basically three major categories of simulation used, starting with everything related to the flow within the well bore, looking at kick tolerance, dynamic kill or bull heading; next anything to do with 3D flow using CFD simulation which is the main focus of this article; finally structural analysis using Finite Element modeling. more>

Related>

Updates from Siemens

Gruppo Campari: Brand spirits leader digitizes its business operations with the SIMATIC IT suite
Using Siemens technology, Gruppo Campari has created a unified repository for all product specifications and increased the efficiency of product development and manufacturing processes
Siemens – With so much talk about securing the Italian control of key businesses, a few companies play offense and take the Italian lifestyle and “Made in Italy” all over the world. Among them is Gruppo Campari, which closed 26 acquisitions in the spirits industry in the past two decades to become the world’s sixth player, with over 50 premium and super-premium brands. Besides aperitifs of international renown (Campari, Aperol), the portfolio includes bitter liqueurs (Averna, Cynar, Braulio) and spirits (Skyy, Grand Marnier, GlenGrant, Wild Turkey, Appleton). In 2016 the group exceeded €1.7 billion in consolidated revenues, with most sales in Americas and the Southern Europe, Middle East and Africa (SEMEA) region.

With each acquisition, Gruppo Campari needs to integrate new products, plants and assets into its operations management systems. Recent examples include J. Wray & Nephew, a company with more than 2,000 employees producing Jamaica’s 225-yearold top rum Appleton Estate, Grand Marnier in France acquired in 2016 and Bulldog London Dry Gin in 2017. Currently, the group operates 58 sites: 18 owned factories, 22 co-packers and 18 distribution centers, counting up to thousands of materials and specifications.

The turning point for the management of such a complex and constantly evolving organization came in 2012. Until then, Gruppo Campari had maintained an unstructured approach to the management of product specifications, which were created locally using Microsoft Word documents or Microsoft Excel® spreadsheets. Besides creating documents in different formats and languages, there was no standard workflow for document authoring and validation, and information was shared via email or phone.

In 2012, the Group launched an extensive digitalization of operation processes, selecting SIMATIC IT Interspec from Siemens PLM Software, a configurable solution for product specification management in process industries, and embracing the Siemens “digitalization” philosophy.

SIMATIC IT Interspec allows the company to develop, configure and manage all product specifications (raw materials, intermediate and finished products and packaging materials), storing all specifications in a single, controlled data repository. more>

Related>

Updates from Siemens

Revolutionizing Plant Performance with the Digital Twin and IIoT eBook
By Jim Brown – How can manufacturers use the digital twin and industrial IoT to dramatically improve manufacturing and product performance?

The manufacturing industries are getting more challenging. Manufacturers must evolve as new technologies remove barriers to entry and enable new, digital players to challenge market share. Operational efficiency is no longer enough to compete in today’s era of digitalization and Industry 4.0.

To remain competitive, companies have to maintain high productivity while offering unprecedented levels of flexibility and responsiveness. We believe this is a fundamental disruption that will change the status quo. To survive, manufacturers need to digitalize operations in order to improve speed, agility, quality, costs, customer satisfaction, and the ability to tailor to customer and market needs.

One of the most compelling digitalization opportunities is adopting the digital twin. This approach combines a number of digital technologies to significantly improve quality and productivity. It starts with comprehensive, virtual models of physical assets – products and production lines – to help optimize designs. But the value is much greater because the physical and virtual twins are connected and kept in sync with real data from the Internet of Things (IoT) and Industrial IoT (IIoT).

Further, companies can use analytics to analyze digital twin data to develop deep insights and intelligence that allow for real-time intervention and long-term, continuous improvement.

The digital twin holds significant productivity and quality opportunities for the plant. It can be used to understand when the plant isn’t operating as intended. It can identify or predict equipment issues that can result in unplanned downtime or correct process deviations before they result in quality slippage, scrap, and rework. more>

Related>

Updates from Siemens

Why the aerospace industry must adopt condition-based maintenance
By Dave Chan and John Cunneen – When the aerospace industry adopts condition-based maintenance and predictive maintenance methods, the cost of owning and operating aircraft is minimized, downtime is reduced and airworthiness is easier to prove.

Unfortunately, many companies seem to simply go through the motions and use antiquated and increasingly unreliable methods to track reliability and, as a result, spend more downtime than needed conducting unnecessary maintenance. This not only increases costs but, more importantly, can put the safety of the aircraft at risk.

In our previous blogs, we discussed the cost of certification and the increasing burdens placed on aircraft companies to prove, through certification documentation, that their aircraft meet the government safety standards established in countries and regions worldwide. We also discussed some of the digital tools available to help manage this process, lower costs, decrease time-to-market and increase availability/readiness.

Digitalization can ease the burden of designing and manufacturing an aircraft, but it’s also a pivotal strategy to implement these digital tools to increase the efficiency of maintaining, repairing and operating the aircraft.

Major industries such as maritime and oil and gas are using condition-based maintenance to lower costs and reduce downtime. With the maritime industry, just like the aerospace industry, reliability, availability, maintainability, and safety (RAMS) are key in keeping a maritime fleet operational. more>

Related>

Updates from Siemens

Siemens – In an industry that demands new products at an unprecedented rate, electronics companies are increasingly relying on “smart manufacturing” to address the challenges of complexity, customization, compliance, globalization and customer expectations for near-perfect quality.

Smart manufacturing – employing computer control and high levels of adaptability – takes advantage of powerful information and manufacturing technologies that enable flexibility in physical processes for a dynamic and global market.

The foundation of smart manufacturing is an integrated platform that unites all of the domains required to engineer, manufacture and deliver today’s smart products. Smart manufacturing is a digitalized development strategy that encompasses the entire process, from PCB design and factory floor optimization to incorporating customer feedback in new designs.

This approach can reduce time-to-market by up to 50 percent, shrink development costs by as much as 25 percent and enable electronics companies to deliver near-perfect product quality.

A digitalization strategy is aimed at creating digital twins of products, production, and performance – detailed and accurate replicas that help accelerate the development, manufacturing, delivery, and service of their real-world counterparts. more>

Related>

Updates from Siemens

Motorsports is speeding the way to safer urban mobility
A novel Siemens partnership will apply the advanced automated and connected vehicle technologies to boost safety – first in motorsports and eventually in urban environments. The partnership brings together Siemens, with its broad, chip-to-city transportation technology portfolio, and the Fédération Internationale de l’Automobile (FIA), the world leader in the most advanced forms of motorsports.
By Edward Bernardon – The World Rally Championship is a fast, exciting and spectacular event, but it can also be dangerous, even for spectators. Some people risk their lives for a perfect photo or the perfect view. Spectators often cross barriers or suddenly jump out of scrubs just to take the ultimate photo of a passing Rally car – risking their own life and potentially endangering fellow-spectators, drivers and co-drivers.

Last year more than four million spectators attended Rally events, which take place on stages that can stretch across more than 25 kilometers. This can make it difficult for race organizers to monitor an entire stage, which are often on relatively narrow dirt and gravel roads that cut through diverse terrain, further hampering efforts of marshals or spotters to watch for fans who may be in harm’s way.

Rally organizers want the ability to quickly detect people in these unsafe areas. They need a solution that provides complete situational awareness of spectator location and flow in order to ensure that all spectators can safely enjoy an event. more>

Related>