Tag Archives: Siemens

Updates from Siemens

Designing large scale automation and robotic systems using Solid Edge
By David Chadwick – Precision Robotics and Automation Ltd (PARI) is a leading developer of automation and robotic systems globally. Their customers in the automotive sector include established giants like Ford, Chrysler, PSA, Daimler-Benz, Tata Motors, Mahindra, and new significant players like VinFast. PARI designs, manufactures and installs complete, automated systems including multi-station lines for machining and assembly of powertrain components and assemblies.

PARI has been a major user of Solid Edge for 15 years with 160 licenses deployed at their headquarters near Pune in India. Typical automation solutions deployed by PARI incorporate a wide variety of robots, actuators and sensors and other mechatronic items. These systems can comprise over 25,000 unique components.

Mangesh Kale, Managing Director of PARI describes their design process. “If a six-axis robot is required for a specific application then we use robots from major suppliers like FANUC, ABB and Kuka, or other makes specified by the customer. We typically receive 3D models from these manufacturers and we integrate these into our automation system designs. However, many applications demand gantry type robots that we design and manufacture ourselves. In a typical solution, about 60% of the design is using standardized commodities of PARI. However, custom parts are typically 40% of the design. For example, the gripper sub-assembly for any material handling solution is typically a custom design. This design meets specific application needs to handle components at different stages in the machining or assembly process. The customization required for assembly processes is even higher. We find that Solid Edge is a very powerful and flexible solution for designing these sub-systems.” more>

Related>

Updates from Siemens

Solid Edge 2021 Feature Highlights: Free CAD Models for Solid Edge Users
By Shannon Kruse -Solid Edge 2021 has been launched and with it comes a vast array of new capabilities and features for users! In this blog series, we will be highlighting a new capability every other week, allowing you to become familiar with the software and learn what Solid Edge 2021 has to offer.

This week’s blog post will be covering 3Dfindit.com, powered by CADENAS. 3Dfindit.com, an online visual search engine, streamlines the process of finding 3D models using advanced search functions such as classifications, geometry, filters, sketches and much more to allow you to significantly reduce technical search times and increase design efficiency.

3Dfindit.com for Solid Edge gives engineers like you a wide variety of intuitive search methods, making it easy to find the exact part you are looking for. You can create a rough model in Solid Edge and initiate a geometric search in 3Dfindit.com to find parts that are similar to that specific model. With millions of 2D and 3D CAD files verified by component manufacturers to choose from, you can easily select and configure the components that match your needs. Once the proper part is located, a single click places it directly into your active Solid Edge assembly.

CAD files of requested parts are automatically generated on the fly, ready to use in Solid Edge. Depending on the catalog, the digital parts are enriched with extensive metadata such as kinematics information to test motion sequences, centers of mass, material, environmental protection standards, order numbers, etc. This saves time by enabling engineers to find and deploy approved parts instead of manually creating them. more>

Related>

Updates from Siemens

New Mentor Capital book
By Yun – Capital is a comprehensive software suite that enables the engineering of electrical systems for large platforms such as cars, aircraft, and sophisticated machines. These platforms have substantial and increasing electronic content, which are dependent upon complex electrical distribution systems to function. Trends such as powertrain electrification and increased vehicle autonomy intensify these challenges leading companies to utilize Capital to overcome them.

Capital was introduced into China for the first time in 2004. It was first applied in the aviation field, and then quickly occupied the market. It was also widely used in aerospace, ship and automobile manufacturing fields. At present, the software has become the electrical system design software with very high market share in China. Capital divides the electrical system into three levels: layout diagram, circuit diagram / schematic diagram and cable network. Capital can assist in design, layout, wiring and inspection at different levels, which greatly improves the efficiency and reliability of electrical system design. At the same time, Capital has a large version upgrade and a number of minor upgrades almost every year. Mentor can timely correct the problems found according to customer practice, add new functions to Capital, keep up with the latest development of computer-aided design technology, and constantly help to improve the design efficiency and reliability of electrical system.

With the development of electronic information technology and the continuous enrichment of social needs, the electrical system in the fields of aviation, aerospace, ship and automobile has become more and more complex, huge and important. The traditional design method has been difficult to ensure the completion of highly reliable electrical system design in a limited time. More and more designers and companies want to help themselves through Capital Electrical system design. more>

Related>

Updates from Siemens

Belgian university uses Siemens solutions to educate future engineers in product design and manufacturing
NX, Simcenter and Teamcenter help KU Leuven prepare students for the manufacturing industry’s digital transformation
Siemens – Katholieke Universiteit Leuven (KU Leuven) is the largest university in Belgium. At its main campus in Leuven and 14 satellite campuses spread across the country, more than 58,000 students are enrolled in 50 faculties and departments. Over 20 of these form the university’s science, engineering and technology group. Following a restructuring of the Belgian education system in 2013, engineering schools providing a more practical education on an academic level are now part of a wider KU Leuven network.

“Within this group, we have three engineering profiles: engineering sciences, engineering technologies, and bioscience engineering,” says Professor Dr. Ir. Bert Lauwers, Dean, Faculty of Engineering Technology, KU Leuven. “To us, academic does not merely mean producing papers; we consider it a way of thinking. KU Leuven’s approach to preparing engineering students for their professional careers and as market innovators for Industry 4.0 makes the university arguably one of the best in Europe.”

KU Leuven pursues an open approach so every student, no matter their major, can visit the fabrication laboratory (FabLab) on-campus to experiment using the equipment there, including several 3D printers.

The Faculty of Engineering Science has a five-year curriculum and is fully located in Leuven. The four-year curriculum of the Faculty of Engineering Technology is more practically oriented. It is spread over several campuses across the Flemish region of Belgium. One of KU Leuven’s locations is the De Nayer campus in the Mechelen region the university shares with the associated Thomas More University College, where students finish their three-year education as a professional bachelors. more>

Related>

Updates from Siemens

Redefine the Line: How automotive trends are changing the ways we move from point A to B
By Tarun Tejpal – The automotive industry has been one of the most dynamic and exciting incubators of technological and product innovation in the modern world. A unique mix of investment, consumer interest, and industry competition has driven this dynamism with a constant search for the next feature, style, or capability to capture the public imagination. At the 1964 New York World’s Fair, General Motors (GM) hoped to capture such interest with the Firebird IV concept car. GM explained, then, that the Firebird IV “anticipates the day when the family will drive to the super-highway, turn over the car’s controls to an automatic, programmed guidance system and travel in comfort and absolute safety at more than twice the speed possible on today’s expressways.” (Gao, Hensley, & Zielke, 2014).

GM’s vision of the future was striking and exciting, but the technology did not yet exist to make it a reality. Ford took a different approach to generating buzz in the market, focusing on the present. Instead of forecasting a future of self-driving cars and super highways, Ford launched a car for “young America out to have a good time”: the Mustang (Gao et al., 2014). It engaged the new generation by providing both transportation and personal expression in a stylish, highly configurable, and inexpensive package. Ford estimated it would sell 100,000 Mustangs, but one year after the launch it had sold over 400,000 (Gao et al., 2014).

Vehicles are now a central feature of everyday life. Since 1964, global vehicle sales have grown by nearly 3 percent on average each year, nearly double the rate of population growth, resulting in one billion vehicles on the road today (Gao et al., 2014).

However, large-scale trends, such as a surging Chinese automotive market, electrification, and urbanization, are beginning to affect the form and function of vehicles and personal mobility systems. more>

Related>

Updates from Siemens

Digitalization takes off in aerospace
By Indrakanti Chakravarthy – When you think about it, the basic mechanics behind aviation has remained the same throughout the decades.

Whether you’re talking about the B-52 Bomber from the mid-1950s. …The Concord SST that whisked folks across the Atlantic. …Or even the much-loved NASA Space Shuttle program. So many wonderful examples of how humans have taken flight over the years.

And here’s the thing – generations of engineers for the past 50 years or so have designed and built aircraft using pretty much the same methods and disciplines.

But all that’s about to change…

Today, with digitalization and the use of the digital twin for aircraft design, development and manufacturing – we are seeing a major shift on how modern aircraft are being designed and built. For the first time ever, the future of flight is boundless. There is no horizon on what we can or cannot do. [VIDEO] more>

Related>

Updates from Siemens

Digitalization takes off in aerospace
By Indrakanti Chakravarthy – When you think about it, the basic mechanics behind aviation has remained the same throughout the decades.

Whether you’re talking about the B-52 Bomber from the mid-1950s. …The Concord SST that whisked folks across the Atlantic. …Or even the much-loved NASA Space Shuttle program. So many wonderful examples of how humans have taken flight over the years.

And here’s the thing – generations of engineers for the past 50 years or so have designed and built aircraft using pretty much the same methods and disciplines.

But all that’s about to change…

Today, with digitalization and the use of the digital twin for aircraft design, development and manufacturing – we are seeing a major shift on how modern aircraft are being designed and built. For the first time ever, the future of flight is boundless. There is no horizon on what we can or cannot do.

Take a look at our latest video below and you’ll see how Siemens is at the forefront of this new digital age. You’ll see how seamless integration of the latest tools and software up and down the value chain are freeing engineers to innovate with less risk. Whether you’re talking automation, simulation, integration of design and analysis tools, additive manufacturing or even artificial intelligence – Siemens has built a global reputation as the Aerospace and Defense partner you can trust. more>

Related>

Updates from Siemens

Industrial design company uses NX to set new standards of performance and consumer appeal in rideable technology
Siemens – Subtle weight transfer may be the key to gliding casually through the urban environment on an electric unicycle, but thoughtful design is the key to comfort and performance. It was an industrial design ethos that prompted Uniwheel to set about transforming a generic unicycle design into one that is both ergonomic and reliable.

“We were aware that most of the electric unicycles on the market followed a rather simple design: internal electronics inside a clamshell with square pedals sticking out,” explained Steve Milton, company director and chief executive of the London-based company. “User feedback revealed that the rather boxy shape hurt the legs. We, therefore, set out to provide a comfortable, safe and enjoyable user experience.”

Uniwheel’s aim was to be the first to market with a design that was thoroughly thought through. That target was met at the end of 2015 when the company launched its first consumer product, just seven months from the first concept. The use of NX™ software from product lifecycle management (PLM) specialist Siemens Digital Industries Software was fundamental to the success and speed of the entire development project.

From first concept, the design team began using NX to create basic 3D models of elements such as the external styling of the plastic case, which has integrated lighting; the metal for the pedals and motor; and fine details such as the grip on the surface of the pedals. The main challenge was to package the sophisticated electronics and software, the removable battery packs, the motor and the wheel housing. Allocating appropriate spaces for the wiring looms was critical. With an emphasis clearly on the ergonomics of the main casing, 3D curves had a big role to play. “NX styling is great; the surfacing capabilities are really comprehensive,” comments Carson Brown, designer. more>

Related>

Updates from Siemens

Digitalizing Energy
By John Lusty – Digitalization is transforming the global Energy & Utilities (E&U) industry, and the most exciting part is that it’s happening so differently in each industry sector depending on their unique plans and priorities. That’s because each organization has a slightly different digital legacy and is executing a different business model that is making them a leader in their respective sectors of the market. It’s also because E&U businesses are inherently non-uniform due to mergers and acquisitions, project mindsets, boom and bust business cycles, breakthroughs in technology, and sudden societal or geopolitical shifts that ripple through the global energy economy at the speed of light.

This blog is the first in a new series from Siemens Digital Industries Software, where we’ll discuss trends in digitalization that relate to the Energy & Utilities industry.  At Siemens, we have the privilege of working closely with industry leaders and people from an extensive range of manufacturing sectors with different degrees of digital maturity.  That lets us see what’s working great as well as some things that didn’t go quite as planned.

We’re also the software business unit within Siemens AG, a mega-enterprise of close to 400,000 colleagues that acts as a massive internal customer for our solutions. People usually look at us a little differently, knowing that as a global engineering and manufacturing organization that relies extensively on our software solutions, we truly have “skin in the game” as our supplier.

Much work has been done across the E&U industry to assemble and apply the “digital twin” of assets, projects and facilities to be more efficient, profitable, and operationally excellent. In this blog, we’ll review examples of excellence in these areas and speak with some of the people who made them happen. more>

Related>

Updates from Siemens

The best reason to adopt cloud innovation software
By Blake Snodgrass – The decision on cloud timing varies based on each company’s scenario. The first step in the transition is to understand what your company’s goals are in the first place. The change driver may be reaching the limits of an existing solution, requiring new capabilities to support digital transformation, consolidating acquisitions, or choosing to modernize IT infrastructure. The impetus for moving to the cloud helps set the right objectives.

The cloud should not be the driver, in the same way that the goal of a software implementation should never be to “go live” with the software. There has to be some tangible business value. For product innovation and engineering software, what better reason could there be than to improve product innovation and engineering performance? The cloud is a means to an end. The real value is helping manufacturers improve the pace and level of innovation.

Improving product innovation and engineering is the bread and butter of CAD, CAE, PLM, and other engineering solutions. These solutions help provide the capabilities engineers and designers need to innovate efficiently. They offer collaboration capabilities that enable product development teams to work together so they can move faster and avoid introducing errors from disjointed processes. They also help coordinate processes and manage product development projects to ensure that projects are executed effectively.

Perhaps that’s old school, and clearly, on-premise solutions can deliver most of these benefits. But the cloud offers some special help here, as well. Today’s engineering teams are working with increased complexity and disruption, adopting new materials, systems-oriented designs, advanced manufacturing methods, and more. To remain efficient, they need to not only innovate their products – they need to innovate their innovation and engineering processes.

How does the cloud help? Traditional software deployments lock in processes and capabilities until the next upgrade cycle. With the cloud, innovations, functionality, and techniques developed by the software vendor can be made available on an ongoing basis. Access to new features allows engineering teams to take advantage of new software capabilities faster. more>

Related>